cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111938 a(n) = n times number of divisors of n of form 4m+1 - n times number of divisors of form 4m+3.

Original entry on oeis.org

1, 2, 0, 4, 10, 0, 0, 8, 9, 20, 0, 0, 26, 0, 0, 16, 34, 18, 0, 40, 0, 0, 0, 0, 75, 52, 0, 0, 58, 0, 0, 32, 0, 68, 0, 36, 74, 0, 0, 80, 82, 0, 0, 0, 90, 0, 0, 0, 49, 150, 0, 104, 106, 0, 0, 0, 0, 116, 0, 0, 122, 0, 0, 64, 260, 0, 0, 136, 0, 0, 0, 72, 146, 148, 0, 0, 0, 0, 0, 160, 81, 164
Offset: 1

Views

Author

Michael Somos, Aug 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 4] == 1, e + 1, (1 + (-1)^e)/2] * p^e; f[2, e_] := 2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 13 2022 *)
  • PARI
    a(n)=if(n<1, 0, n*sumdiv(n,d, (d%4==1)-(d%4==3)))
    
  • PARI
    {a(n)=local(r); if(n<1, 0, r=sqrtint(n); sum(x=-r,r, sum(y=-r,r, if(x^2+y^2==n, (x+y)^2) ))/4 )} \\ Michael Somos, Sep 12 2005
    
  • PARI
    {a(n)=if(n<1, 0, n*polcoeff( sum(k=1,sqrtint(n), 2*x^k^2, 1+x*O(x^n))^2, n)/4 )} \\ Michael Somos, Sep 12 2005

Formula

Multiplicative with a(p^e) = p^e if p = 2; (e+1)*p^e if p == 1 (mod 4); ((1+(-1)^e)/2)*p^e if p == 3 (mod 4).
a(n) = n * A002654(n).
G.f.: Sum_{k>0} k(x^k-x^(3k))/(1+x^(2k))^2 = Sum_{k>0} -(-1)^k(2k-1)x^(2k-1)/(1-x^(2k-1))^2.
G.f.: xd/dx(theta_3(x)^2)/4. - Michael Somos, Nov 07 2005
G.f.: (1/4)* Sum_{u,v} (u*u +v*v)* x^(u*u +v*v). - Michael Somos, Jun 14 2007
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi/8 = 0.392699... (A019675). - Amiram Eldar, Oct 13 2022