A111940 Triangle P, read by rows, that satisfies [P^-1](n,k) = P(n+1,k+1) for n >= k >= 0, with P(k,k)=1 and P(k+1,1)=P(k+1,0) for k >= 0, where [P^-1] denotes the matrix inverse of P.
1, 1, 1, -1, -1, 1, 0, 0, 1, 1, 0, 0, -1, -1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1
Offset: 0
Examples
Triangle P begins: 1; 1, 1; -1, -1, 1; 0, 0, 1, 1; 0, 0, -1, -1, 1; 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, -1, -1, 1; 0, 0, 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, 0, 0, -1, -1, 1; ... where P^-1 shifts columns left and up one place: 1; -1, 1; 0, 1, 1; 0, -1, -1, 1; 0, 0, 0, 1, 1; 0, 0, 0, -1, -1, 1; ...
Programs
-
PARI
{P(n,k,q=-1) = local(A=Mat(1),B); if(n
Formula
The g.f. of column k of matrix power P^m (ignoring leading zeros) is:
cos(m*arccos(1-x^2/2)) + (-1)^k * sin(m*arccos(1-x^2/2)) * (1-x/2) / sqrt(1-x^2/4).