cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A111982 Row sums of abs(A111967).

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 2, 5, 2, 4, 2, 6, 2, 4, 2, 7, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 9, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 11, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 12, 2, 4, 2, 6, 2
Offset: 0

Views

Author

Paul Barry, Aug 24 2005

Keywords

Comments

mod(a(n),2)=A036987(n). a(2^n-1)=2n-1+2*0^n; a(2^n)=2-0^n.

A127749 Inverse of number triangle A(n,k) = 1/(2n+1) if k <= n <= 2k, 0 otherwise.

Original entry on oeis.org

1, 0, 3, 0, -3, 5, 0, 3, -5, 7, 0, 0, 0, -7, 9, 0, -3, 5, 0, -9, 11, 0, 0, 0, 0, 0, -11, 13, 0, 3, -5, 7, 0, 0, -13, 15, 0, 0, 0, 0, 0, 0, 0, -15, 17, 0, 0, 0, -7, 9, 0, 0, 0, -17, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 21, 0, -3, 5
Offset: 0

Views

Author

Paul Barry, Jan 28 2007

Keywords

Comments

Conjectures: row sums modulo 2 are the Fredholm-Rueppel sequence A036987; row sums of triangle modulo 2 are A111982. Row sums are A127750.
The first conjecture is equivalent to the row sums conjecture in A111967. - R. J. Mathar, Apr 21 2021

Examples

			Triangle begins
  1;
  0,  3;
  0, -3,  5;
  0,  3, -5,  7;
  0,  0,  0, -7,  9;
  0, -3,  5,  0, -9,  11;
  0,  0,  0,  0,  0, -11,  13;
  0,  3, -5,  7,  0,   0, -13,  15;
  0,  0,  0,  0,  0,   0,   0, -15,  17;
  0,  0,  0, -7,  9,   0,   0,   0, -17,  19;
  0,  0,  0,  0,  0,   0,   0,   0,   0, -19,  21;
  0, -3,  5,  0, -9,  11,   0,   0,   0,   0, -21,  23;
  0,  0,  0,  0,  0,   0,   0,   0,   0,   0,   0, -23, 25;
Inverse of triangle
  1;
  0, 1/3;
  0, 1/5, 1/5;
  0,  0,  1/7, 1/7;
  0,  0,  1/9, 1/9,  1/9;
  0,  0,   0,  1/11, 1/11, 1/11;
  0,  0,   0,  1/13, 1/13, 1/13, 1/13;
  0,  0,   0,   0,   1/15, 1/15, 1/15, 1/15;
  0,  0,   0,   0,   1/17, 1/17, 1/17, 1/17, 1/17;
  0,  0,   0,   0,    0,   1/19, 1/19, 1/19, 1/19, 1/19;
  0,  0,   0,   0,    0,   1/21, 1/21, 1/21, 1/21, 1/21, 1/21;
		

Crossrefs

Cf. A111967.

Programs

  • Maple
    A127749 := proc(n,k)
        option remember ;
        if k > n then
            0 ;
        elif k = n then
            2*n+1 ;
        else
            -(2*k+1)*add( procname(n,i)/(2*i+1),i=k+1..min(n,2*k)) ;
        end if;
    end proc:
    seq(seq( A127749(n,k),k=0..n),n=0..20) ; # R. J. Mathar, Feb 09 2021
  • Mathematica
    nmax = 10;
    A[n_, k_] := If[k <= n <= 2k, 1/(2n+1), 0];
    invA = Inverse[Table[A[n, k], {n, 0, nmax}, {k, 0, nmax}]];
    T[n_, k_] := invA[[n+1, k+1]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 05 2020 *)

Formula

T(n,k) = (2*k+1)*A111967(n,k). - R. J. Mathar, Apr 21 2021

A127822 Triangle whose row sums modulo 2 give the Fredholm-Rueppel sequence A036987.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Jan 30 2007

Keywords

Comments

Row sums are A111982. Unsigned version of A111967.

Examples

			Triangle begins
1,
0, 1,
0, 1, 1,
0, 1, 1, 1,
0, 0, 0, 1, 1,
0, 1, 1, 0, 1, 1,
0, 0, 0, 0, 0, 1, 1,
0, 1, 1, 1, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 1, 1,
0, 0, 0, 1, 1, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
		

Formula

G.f. of k-th column is x^k*if(k=0,1,x*sum{j=0..\infty, x^(-2^(j/2)*(((k+2)/(2*sqrt(2))-(k+1))(-1)^j-(k+2)/(2*sqrt(2))-(k+1))-(k+2))+1+x}
Showing 1-3 of 3 results.