A111972 a(n) = Max(omega(k): 1<=k<=n), where omega(n) = A001221(n), the number of distinct prime factors of n.
0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1
Keywords
Examples
a(7)=2 because omega(1)=0, omega(2)=omega(3)=omega(4)=omega(5)=omega(7)=1 and omega(6)=2 (as 6=2*3), so 2 is the maximum.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..65536
- Safia Aoudjit and Djamel Berkane, Explicit Estimates Involving the Primorial Integers and Applications, J. Int. Seq., Vol. 24 (2021), Article 21.7.8.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, max(a(n-1), nops(ifactors(n)[2]))) end: seq(a(n), n=1..105); # Alois P. Heinz, Aug 19 2021
-
Mathematica
FoldList[Max, PrimeNu /@ Range[105]] (* Michael De Vlieger, Dec 29 2021 *)
Comments