A111973 Expansion of ((eta(q^2)eta(q^4))^6/(eta(q)eta(q^8))^4-1)/4 in powers of q.
1, 2, 4, 6, 6, 8, 8, 6, 13, 12, 12, 24, 14, 16, 24, 6, 18, 26, 20, 36, 32, 24, 24, 24, 31, 28, 40, 48, 30, 48, 32, 6, 48, 36, 48, 78, 38, 40, 56, 36, 42, 64, 44, 72, 78, 48, 48, 24, 57, 62, 72, 84, 54, 80, 72, 48, 80, 60, 60, 144, 62, 64, 104, 6, 84, 96, 68, 108, 96, 96, 72
Offset: 1
References
- Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373, Entry 31.
- Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.29).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A097057(n)=4*a(n), if n>0.
Programs
-
Mathematica
f[p_, e_] := (p^(e+1)-1)/(p-1); f[2, 1] = 2; f[2, e_] := 6; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 22 2023 *)
-
PARI
a(n)=if(n<1, 0, sumdiv(n,d, d*(-1)^((d+1)*(n/d+1))*[2,1,0,1][n/d%4+1]))
-
PARI
{a(n)= local(A); if(n<1, 0, A=x*O(x^n); polcoeff( ((eta(x^2+A)*eta(x^4+A))^6/(eta(x+A)*eta(x^8+A))^4-1)/4, n))}
-
PARI
a(n)= local(x); if(n<1, 0, x=2^valuation(n,2); sigma(n/x)*if(x>2,6,x))
-
PARI
{a(n)=local(A,p,e); if(n<1, 0, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, 2+4*(e>1), (p^(e+1)-1)/(p-1)))))}
Formula
Multiplicative with a(2)=2, a(2^e)=6 if e>1, a(p^e)=(p^(e+1)-1)/(p-1) if p>2.
G.f.: ((theta_3(q)theta_3(q^2))^2-1)/4 where theta_3(q)=1+2(q+q^4+q^9+...).
G.f.: Sum_{k>0} 2*x^(4k)/(1+x^(4k))^2 +x^(2k-1)/(1-x^(2k-1))^2 = Sum_{k>0} +(2+(-1)^k)k x^(2k)/(1+x^(2k)) +(2k-1)x^(2k-1)/(1-x^(2k-1)). - Michael Somos, Oct 22 2005