cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111973 Expansion of ((eta(q^2)eta(q^4))^6/(eta(q)eta(q^8))^4-1)/4 in powers of q.

Original entry on oeis.org

1, 2, 4, 6, 6, 8, 8, 6, 13, 12, 12, 24, 14, 16, 24, 6, 18, 26, 20, 36, 32, 24, 24, 24, 31, 28, 40, 48, 30, 48, 32, 6, 48, 36, 48, 78, 38, 40, 56, 36, 42, 64, 44, 72, 78, 48, 48, 24, 57, 62, 72, 84, 54, 80, 72, 48, 80, 60, 60, 144, 62, 64, 104, 6, 84, 96, 68, 108, 96, 96, 72
Offset: 1

Views

Author

Michael Somos, Aug 23 2005

Keywords

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373, Entry 31.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.29).

Crossrefs

Cf. A097057(n)=4*a(n), if n>0.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); f[2, 1] = 2; f[2, e_] := 6; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n,d, d*(-1)^((d+1)*(n/d+1))*[2,1,0,1][n/d%4+1]))
    
  • PARI
    {a(n)= local(A); if(n<1, 0, A=x*O(x^n); polcoeff( ((eta(x^2+A)*eta(x^4+A))^6/(eta(x+A)*eta(x^8+A))^4-1)/4, n))}
    
  • PARI
    a(n)= local(x); if(n<1, 0, x=2^valuation(n,2); sigma(n/x)*if(x>2,6,x))
    
  • PARI
    {a(n)=local(A,p,e); if(n<1, 0, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, 2+4*(e>1), (p^(e+1)-1)/(p-1)))))}

Formula

Multiplicative with a(2)=2, a(2^e)=6 if e>1, a(p^e)=(p^(e+1)-1)/(p-1) if p>2.
G.f.: ((theta_3(q)theta_3(q^2))^2-1)/4 where theta_3(q)=1+2(q+q^4+q^9+...).
G.f.: Sum_{k>0} 2*x^(4k)/(1+x^(4k))^2 +x^(2k-1)/(1-x^(2k-1))^2 = Sum_{k>0} +(2+(-1)^k)k x^(2k)/(1+x^(2k)) +(2k-1)x^(2k-1)/(1-x^(2k-1)). - Michael Somos, Oct 22 2005