cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111975 Triangle P, read by rows, that satisfies [P^2](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(2*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(k,k)=1 and P(k+2,2)=P(k+2,0) for k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 4, 4, 1, 16, 16, 16, 8, 1, 96, 96, 96, 64, 16, 1, 896, 896, 896, 704, 256, 32, 1, 13568, 13568, 13568, 11776, 5504, 1024, 64, 1, 345088, 345088, 345088, 317952, 178176, 43776, 4096, 128, 1, 15112192, 15112192, 15112192, 14422016
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2005

Keywords

Comments

Terms of column 0, column 1 and column 2 in row n are equal for n>2.

Examples

			Triangle P begins:
1;
1,1;
1,2,1;
4,4,4,1;
16,16,16,8,1;
96,96,96,64,16,1;
896,896,896,704,256,32,1;
13568,13568,13568,11776,5504,1024,64,1;
345088,345088,345088,317952,178176,43776,4096,128,1; ...
where P^2 shifts columns left and up one place:
1;
2,1;
4,4,1;
16,16,8,1;
96,96,64,16,1; ...
The matrix inverse, P^-1, equals signed P:
1;
-1,1;
1,-2,1;
-4,4,-4,1;
16,-16,16,-8,1; ...
		

Crossrefs

Cf. A111976 (column 0), A111977 (row sums), A111978 (matrix log), A098539 (variant), A078536 (variant).

Programs

  • PARI
    P(n,k,q=2)=local(A=Mat(1),B);if(n2,(A^q)[i-1,2],1), B[i,j]=(A^q)[i-1,j-1]));));A=B);return(A[n+1,k+1]))

Formula

The g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*2^k)^n/n! * Product_{j=0..n-1} L(2^j*x) where L(x) is the g.f. of column 0 of the matrix log of P (A111979) and satisfies: x-x^2 = Sum_{j>=1}(1-2^j*x)*Prod_{i=0..j-1}L(2^i*x).