A111978 Matrix log of triangle A111975, which shifts columns left and up under matrix square; these terms are the result of multiplying each element in row n and column k by (n-k)!.
0, 1, 0, 0, 2, 0, 16, 0, 4, 0, 0, 32, 0, 8, 0, 1536, 0, 64, 0, 16, 0, 0, 3072, 0, 128, 0, 32, 0, -319488, 0, 6144, 0, 256, 0, 64, 0, 0, -638976, 0, 12288, 0, 512, 0, 128, 0, 36007575552, 0, -1277952, 0, 24576, 0, 1024, 0, 256, 0, 0, 72015151104, 0, -2555904, 0, 49152, 0, 2048, 0, 512, 0
Offset: 0
Examples
Matrix log of A111975, with factorial denominators, begins: 0; 1/1!, 0; 0/2!, 2/1!, 0; 16/3!, 0/2!, 4/1!, 0; 0/4!, 32/3!, 0/2!, 8/1!, 0; 1536/5!, 0/4!, 64/3!, 0/2!, 16/1!, 0; 0/6!, 3072/5!, 0/4!, 128/3!, 0/2!, 32/1!, 0; -319488/7!, 0/6!, 6144/5!, 0/4!, 256/3!, 0/2!, 64/1!, 0; ...
Programs
-
PARI
T(n,k,q=2)=local(A=Mat(1),B);if(n
2,(A^q)[i-1,2],1), B[i,j]=(A^q)[i-1,j-1]));));A=B); B=sum(i=1,#A,-(A^0-A)^i/i);return((n-k)!*B[n+1,k+1]))
Formula
T(n, k) = 2^k*T(n-k, 0) = 2^k*A111979(n-k) for n>=k>=0.
Comments