A111975
Triangle P, read by rows, that satisfies [P^2](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(2*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(k,k)=1 and P(k+2,2)=P(k+2,0) for k>=0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 4, 4, 1, 16, 16, 16, 8, 1, 96, 96, 96, 64, 16, 1, 896, 896, 896, 704, 256, 32, 1, 13568, 13568, 13568, 11776, 5504, 1024, 64, 1, 345088, 345088, 345088, 317952, 178176, 43776, 4096, 128, 1, 15112192, 15112192, 15112192, 14422016
Offset: 0
Triangle P begins:
1;
1,1;
1,2,1;
4,4,4,1;
16,16,16,8,1;
96,96,96,64,16,1;
896,896,896,704,256,32,1;
13568,13568,13568,11776,5504,1024,64,1;
345088,345088,345088,317952,178176,43776,4096,128,1; ...
where P^2 shifts columns left and up one place:
1;
2,1;
4,4,1;
16,16,8,1;
96,96,64,16,1; ...
The matrix inverse, P^-1, equals signed P:
1;
-1,1;
1,-2,1;
-4,4,-4,1;
16,-16,16,-8,1; ...
-
P(n,k,q=2)=local(A=Mat(1),B);if(n2,(A^q)[i-1,2],1), B[i,j]=(A^q)[i-1,j-1]));));A=B);return(A[n+1,k+1]))
A111976
Column 0 of triangle A111975, which shifts columns left and up under matrix square.
Original entry on oeis.org
1, 1, 1, 4, 16, 96, 896, 13568, 345088, 15112192, 1159913472, 158164664320, 38737429987328, 17197276791701504, 13946909814794223616, 20801835304287183306752, 57394078732651064041930752
Offset: 0
G.f. A(x) = 1 + x + x^2 + 4*x^3 + 16*x^4 + 96*x^5 + 896*x^6 +...
= 1 + L(x) + L(x)*L(2*x)/2! + L(x)*L(2*x)*L(2^2*x)/3! +...
where L(x) = x + 16/3!*x^3 + 1536/5!*x^5 - 319488/7!*x^7 +-...
-
{a(n,q=2)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1,if(j==1,B[i,j]=if(i>2,(A^q)[i-1,2],1), B[i,j]=(A^q)[i-1,j-1]));));A=B);return(A[n+1,1]))}
A111978
Matrix log of triangle A111975, which shifts columns left and up under matrix square; these terms are the result of multiplying each element in row n and column k by (n-k)!.
Original entry on oeis.org
0, 1, 0, 0, 2, 0, 16, 0, 4, 0, 0, 32, 0, 8, 0, 1536, 0, 64, 0, 16, 0, 0, 3072, 0, 128, 0, 32, 0, -319488, 0, 6144, 0, 256, 0, 64, 0, 0, -638976, 0, 12288, 0, 512, 0, 128, 0, 36007575552, 0, -1277952, 0, 24576, 0, 1024, 0, 256, 0, 0, 72015151104, 0, -2555904, 0, 49152, 0, 2048, 0, 512, 0
Offset: 0
Matrix log of A111975, with factorial denominators, begins:
0;
1/1!, 0;
0/2!, 2/1!, 0;
16/3!, 0/2!, 4/1!, 0;
0/4!, 32/3!, 0/2!, 8/1!, 0;
1536/5!, 0/4!, 64/3!, 0/2!, 16/1!, 0;
0/6!, 3072/5!, 0/4!, 128/3!, 0/2!, 32/1!, 0;
-319488/7!, 0/6!, 6144/5!, 0/4!, 256/3!, 0/2!, 64/1!, 0; ...
-
T(n,k,q=2)=local(A=Mat(1),B);if(n2,(A^q)[i-1,2],1), B[i,j]=(A^q)[i-1,j-1]));));A=B); B=sum(i=1,#A,-(A^0-A)^i/i);return((n-k)!*B[n+1,k+1]))
Showing 1-3 of 3 results.
Comments