A112047 Bisection of A112046.
2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 11, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5
Offset: 1
Keywords
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a112046[n_]:=Block[{i=1},While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Table[a112046[2n - 1], {n, 102}] (* Indranil Ghosh, May 11 2017 *)
-
Python
from sympy import jacobi_symbol as J def a112046(n): i=1 while True: if J(i, 2*n + 1)!=1: return i else: i+=1 print([a112046(2*n - 1) for n in range(1, 103)]) # Indranil Ghosh, May 11 2017
Formula
a(n) = A112046(2n-1)