A112050 Length of the longest prefix of 1's in the Jacobi-vector {J(2n+1,1),J(2n+1,2),...,J(2n+1,2n)}.
1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 6, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 6, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 6, 10, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 12, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 6, 4, 1, 1, 2, 2, 1, 1
Offset: 1
Keywords
Crossrefs
Cf. A112046.
Programs
-
Mathematica
a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Table[a112046[n] - 1, {n, 102}] (* Indranil Ghosh, May 24 2017 *)
-
Python
from sympy import jacobi_symbol as J def a112046(n): i=1 while True: if J(i, 2*n + 1)!=1: return i else: i+=1 def a(n): return a112046(n) - 1 print([a(n) for n in range(1, 103)]) # Indranil Ghosh, May 24 2017
Formula
a(n) = A112046(n) - 1.
Extensions
Name clarified by Joerg Arndt, May 24 2017