A112053 a(n) = A112046(2n) - A112046(2n-1) = A112048(n) - A112047(n).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Table[a112046[2n] - a112046[2n - 1] , {n, 101}] (* Indranil Ghosh, May 24 2017 *)
-
Python
from sympy import jacobi_symbol as J def a112046(n): i=1 while True: if J(i, 2*n + 1)!=1: return i else: i+=1 def a(n): return a112046(2*n) - a112046(2*n - 1) print([a(n) for n in range(1, 102)]) # Indranil Ghosh, May 24 2017