cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112054 Indices where A112053 is not zero.

Original entry on oeis.org

12, 18, 30, 42, 48, 72, 78, 90, 102, 108, 120, 132, 138, 162, 168, 180, 192, 198, 210, 222, 228, 240, 252, 258, 282, 288, 300, 312, 318, 330, 342, 348, 372, 378, 390, 402, 408, 420, 432, 438, 450, 462, 468, 492, 498, 510, 522, 528, 540, 552, 558, 582, 588
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Comments

These are all divisible by 6, as J(2,m) = +1 if m = 1 or 7 mod 8 and -1 if m = 3 or 5 mod 8 and J(3,m) = +1 if m = 1 or 11 mod 12, -1 if m = 5 or 7 mod 12 and 0 if m = 3 or 9 mod 12 (where Jacobi symbol J(i,m) returns +1 if i is quadratic residue modulo odd number m), it follows that only when i=24*n it holds that J(2,i-1)=J(2,i+1)=J(3,i-1)=J(3,i+1)=+1 and thus only then the function A112046 (and A112053) depends on values of J(k>3,m).

Crossrefs

Cf. A112058(n) = 4*a(n). A112055(n) = a(n)/6.

Programs

  • Mathematica
    a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Select[Range[1000], a112046[2#] - a112046[2# - 1] != 0 &] (* Indranil Ghosh, May 24 2017 *)
  • Python
    from sympy import jacobi_symbol as J
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a(n): return a112046(2*n) - a112046(2*n - 1)
    print([n for n in range(1, 1001) if a(n)!=0]) # Indranil Ghosh, May 24 2017