cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112056 Odd numbers of the form 4n-1 for which Jacobi-first-non-one(4n-1) differs from Jacobi-first-non-one(4n+1).

Original entry on oeis.org

47, 71, 119, 167, 191, 287, 311, 359, 407, 431, 479, 527, 551, 647, 671, 719, 767, 791, 839, 887, 911, 959, 1007, 1031, 1127, 1151, 1199, 1247, 1271, 1319, 1367, 1391, 1487, 1511, 1559, 1607, 1631, 1679, 1727, 1751, 1799, 1847, 1871, 1967
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Comments

Here Jacobi-first-non-one(m) (for odd numbers m) is defined as the first value of i >= 1, for which Jacobi symbol J(i,m) is not +1 (i.e. is either 0 or -1).

Crossrefs

Programs

  • Mathematica
    a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; 4*Select[Range[1000], a112046[2#] - a112046[2# - 1] != 0 &] - 1 (* Indranil Ghosh, May 24 2017 *)
  • Python
    from sympy import jacobi_symbol as J
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a(n): return a112046(2*n) - a112046(2*n - 1)
    print([4*n - 1 for n in range(1, 1001) if a(n)!=0]) # Indranil Ghosh, May 24 2017

Formula

a(n) = 4*A112054(n)-1.
a(n) = A112057(n)-2 = A112058(n)-1.