cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112053 a(n) = A112046(2n) - A112046(2n-1) = A112048(n) - A112047(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Crossrefs

Indices where a(n) is not zero: A112054. Values at those points: A112059.

Programs

  • Mathematica
    a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Table[a112046[2n] - a112046[2n - 1] , {n, 101}] (* Indranil Ghosh, May 24 2017 *)
  • Python
    from sympy import jacobi_symbol as J
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a(n): return a112046(2*n) - a112046(2*n - 1)
    print([a(n) for n in range(1, 102)]) # Indranil Ghosh, May 24 2017

Formula

a(n) = A112048(n)-A112047(n).

A112080 a(n) = difference between Jacobi-first-non-one(24n+1) and Jacobi-first-non-one(24n-1).

Original entry on oeis.org

0, 2, -2, 0, 4, 0, 8, -2, 0, 0, 0, 12, -6, 0, 12, 0, 2, -2, 0, -6, 0, 18, -6, 0, 0, 0, 2, -6, 0, -4, 0, 2, -2, 0, 18, 0, 2, -2, 0, 24, 0, 6, -2, 0, 0, 0, 6, -8, 0, 4, 0, 2, -2, 0, -6, 0, 32, -6, 0, 0, 0, 2, -6, 0, -10, 0, 2, -2, 0, 28, 0, 2, -2, 0, 4, 0, 38, -2, 0, 0, 0, 6, -6, 0, 4, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Comments

The definition of Jacobi-first-non-one is given in A112056.

Crossrefs

A112081(n) = a(n)/2. A112082 gives the points where a(n) is zero. A112059 gives the nonzero terms.

Formula

a(n) = 4*A112054(n)+1.
Showing 1-2 of 2 results.