A112106 Unique sequence of numbers {1,2,3} where g.f. A(x) satisfies A(x) = B(B(B(x))) (3rd self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.
1, 3, 3, 3, 2, 2, 1, 2, 1, 3, 1, 1, 3, 3, 3, 2, 3, 3, 2, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 3, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 1, 1, 1, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 1, 3, 2, 1, 3, 2, 2, 1, 2, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 2, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3, 1, 3, 2, 1, 2, 2, 1, 1, 3, 1
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 3*x^2 + 3*x^3 + 3*x^4 + 2*x^5 + 2*x^6 + ... then A(x) = B(B(B(x))) where B(x) = x + x^2 - x^3 + 3*x^4 - 10*x^5 + 35*x^6 - 119*x^7 + ... is the g.f. of A112107.
Programs
-
PARI
{a(n,m=3)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))}