cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112226 Table T(n,k) of number of elements of Weyl group of type D of order 2^{n-1} n! such that a reduced word uses exactly n-k distinct simple reflections 0 <= k <= n, n>=1.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 13, 7, 3, 1, 135, 40, 12, 4, 1, 1537, 293, 66, 18, 5, 1, 19811, 2646, 451, 100, 25, 6, 1, 289073, 28887, 3753, 663, 143, 33, 7, 1, 4741923, 374820, 37798, 5232, 940, 196, 42, 8, 1, 86705417, 5676121, 457508, 49444, 7174, 1294, 260, 52, 9, 1
Offset: 0

Views

Author

Mike Zabrocki, Aug 28 2005

Keywords

Comments

The first two rows of this table are not well-defined. This is an analog of the notion of permutations with k components for type D (see A059438)

Examples

			D_3 is generated by {s_0,s_1,s_2} where s_0^2 = s_1^2 = s_2^2 = (s_0 s_1)^2 = (s_0 s_2)^3 = (s_1 s_2)^2, the elements of this group can be broken up into 4 sets with reduced words as {1}, {s_0, s_1, s_2}, {s_0 s_1, s_1 s_2, s_2 s_1, s_1 s_2 s_1, s_0 s_2, s_2 s_0, s_0 s_2 s_0} hence T(3,3)=1, T(3,2)=3 and T(3,1)=7. T(3,0)=13 since the remaining 13 elements will have reduced words where all three simple reflections appear.
		

Crossrefs

Programs

  • Maple
    f2:=proc(n,k) local i,gx,g2x; gx:=add(i!*x^i, i=0..n); g2x:=subs(x=2*x,gx); coeff(series(((g2x+3)/(2*gx) + x)*(1-1/gx)^k - x*(1-1/gx)^(k-1),x,n+1),x,n); end: f1:=n->coeff(series((add(2^k*k!*x^k,k=1..n)+4)/add(2*k!*x^k,k=0..n)+x-2,x,n+1),x,n); T:=(n,k)->if k=0 then f1(n) else f2(n,k) fi;
  • Mathematica
    max = 10;
    fA = 1 - 1/Sum[n!*x^n, {n, 0, max}] + O[x]^max;
    fD = (3 + Sum[2^n*n!*x^n, {n, 0, max}])/(2*Sum[n!*x^n, {n, 0, max}]) + x - 2 + O[x]^max;
    f = (2*t*fA - 2*t*x + t^2*x*fA + fD)/(1 - t*fA);
    row[n_] := CoefficientList[ SeriesCoefficient[f, {x, 0, n}], t];
    Join[{{0}}, {{0, 1}}, Table[row[n], {n, 2, max - 1}]] // Flatten (* Jean-François Alcover, Nov 28 2017 *)

Formula

G.f.: (g(2x) - (2 t x - 4 t - 2 x + 4) g(x) - 4 t + 3)/(2(t + (1-t) g(x))) where g(x) = sum_{n >= 0} n! x^n o.g.f. for first column given by (g(2x)+3)/(2g(x)) + x - 2 o.g.f. for k^th (k>1) column given by ((g(2x)+3)/(2g(x)) + x)*(1-1/g(x))^{k-1} - x (1-1/g(x))^{k-2}