A112258 Numbers n not divisible by 10 such that the decimal representation of n^26 does not use every nonzero digit.
1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 17, 23, 29, 39, 61, 81, 95, 119, 164, 242, 5193, 9004, 23432, 246968, 8876708, 32886598, 2141194665
Offset: 1
Examples
5^26 = 1490116119384765625 uses every digit, so 5 is not in the sequence. 6^26 = 170581728179578208256 does not use digits 3 and 4, so 6 is a term.
Links
- Patrick De Geest, The Nine Digits Page
- Eric Weisstein's World of Mathematics, Pandigital
Crossrefs
Cf. A089081 (26th powers).
Programs
-
PARI
{e=26;for(n=1,350000,if(n%10>0,v=vector(9);c=0;k=n^e;while(c<9&&k>0, g=divrem(k,10);k=g[1];if(g[2]>0&&v[g[2]]==0,v[g[2]]=1;c++));if(c<9,print1(n,","))))}
-
Python
A112258_list = [n for n in range(1,10**6) if n % 10 and len(set(str(n**26))) < 10] # Chai Wah Wu, May 31 2015
Extensions
a(28) from Lars Blomberg, Sep 25 2011
Comments