A112285 Consider the array T(n, m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the row sum of A to the first coefficient of one.
2, 4, 8, 27, 22, 340, 44, 156, 62, 1065, 112, 2467, 158, 1914, 2551, 4234, 274, 2161, 344, 8643, 6611, 12696, 508, 8410, 522, 28171, 566, 7500, 814, 39433, 932, 15000, 57160, 26980, 15681, 13590, 1334, 121327, 7786, 8908, 1642, 15896, 1808, 150069, 74267, 16105, 2164
Offset: 1
Keywords
Programs
-
Mathematica
f[n_] := Module[{j = 1, a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; While[a[j] != 1, j++ ]; Sum[ a[i], {i, 0, j}]]; Do[ Print[ f[n]], {n, 29}]
Formula
Sum_{m=0..k} from T(n, m), k is the least k>0 such that T(n, m)=1.
Sum_{m=0..A112283(n)} T(n, m).
a(p)=p(p-1)+2.
Extensions
More terms from Robert G. Wilson v, Jul 25 2008
Comments