A112287 a(n) = denominator of sum of reciprocals of the terms of the continued fraction for H(n) = Sum_{k=1..n} 1/k.
1, 2, 5, 12, 24, 4, 5, 35, 420, 156, 300, 45, 15, 39, 15351, 72, 1848, 10675, 300, 2142, 36, 5460, 15, 1870, 90, 63, 2040, 120, 138600, 3960, 1750320, 1324895, 440, 3945480, 5220, 158340, 1680, 3341100, 498960, 48048, 1260, 69264, 1510, 1168200, 568260
Offset: 1
Examples
1 +1/2 +1/3 +1/4 +1/5 +1/6 = 49/20 = 2 + 1/(2 + 1/(4 + 1/2)). So a(6) is 4, the denominator of 7/4 = 1/2 + 1/2 + 1/4 + 1/2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Harmonic Number
- Eric Weisstein's World of Mathematics, Continued Fraction
Crossrefs
Programs
-
Mathematica
f[n_] := Plus @@ (1/# &) /@ ContinuedFraction[Sum[1/k, {k, n}]]; Table[Denominator[f[n]], {n, 45}] (* Ray Chandler, Sep 06 2005 *)
Extensions
Extended by Hans Havermann and Ray Chandler, Sep 06 2005