A112295 Inverse of a double factorial related triangle.
1, -1, 1, 0, -3, 1, 0, 0, -5, 1, 0, 0, 0, -7, 1, 0, 0, 0, 0, -9, 1, 0, 0, 0, 0, 0, -11, 1, 0, 0, 0, 0, 0, 0, -13, 1, 0, 0, 0, 0, 0, 0, 0, -15, 1, 0, 0, 0, 0, 0, 0, 0, 0, -17, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 1
Offset: 0
Examples
Triangle begins 1; -1, 1; 0, -3, 1; 0, 0, -5, 1; 0, 0, 0, -7, 1; 0, 0, 0, 0, -9, 1; 0, 0, 0, 0, 0, -11, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A112295:= func< n,k | k eq n select 1 else k eq n-1 select 1-2*n else 0 >; [A112295(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 17 2021
-
Mathematica
T[n_, k_]:= If[k==n, 1, If[k==n-1, 1-2*n, 0]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
-
Sage
def A112295(n,k): return 1 if k==n else 1-2*n if k==n-1 else 0 flatten([[A112295(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Feb 17 2021
Formula
From G. C. Greubel, Feb 17 2021: (Start)
T(n, k) = 1 - 2*n if k = n-1 otherwise 0, with T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 1 - 2*n - [n=0]. (End)
Comments