cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112308 Sum of the heights of the second peaks in all Dyck paths of semilength n+2.

Original entry on oeis.org

1, 6, 25, 93, 333, 1180, 4183, 14895, 53349, 192239, 696765, 2539157, 9299547, 34215102, 126411177, 468822297, 1744799967, 6514363557, 24393558687, 91591471287, 344764147407, 1300756937445, 4918188617379, 18633066901747
Offset: 0

Views

Author

Emeric Deutsch, Nov 30 2005

Keywords

Comments

a(n) = Sum_{k=0..n+1} k*A112307(n+2,k).

Examples

			a(1)=6 because the second peaks of the Dyck paths UDUDUD, UDUUDD, UUDDUD, UUDUDD and UUUDDD, where U=(1,1), D=(1,-1), are 1, 2, 1, 2 and 0, respectively.
		

Crossrefs

Cf. A112307.
Partial sums of A070857.

Programs

  • Maple
    c:=(1-sqrt(1-4*z))/2/z: g:=series(c^4*(1+z*c)/(1-z),z=0,32): 1,seq(coeff(g,z^n),n=1..27);
  • Mathematica
    CoefficientList[Series[((1-Sqrt[1-4*x])/(2*x))^4*(1+x*(1-Sqrt[1-4*x])/(2*x))/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)

Formula

G.f.: c^4*(1+z*c)/(1-z), where c=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
Recurrence: (n+4)*(221*n-49)*a(n) = (1105*n^2 + 2877*n + 1178)*a(n-1) - 2*(442*n^2 + 1077*n + 659)*a(n-2) + 56*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
D-finite with recurrence 2*(n+4)*a(n) +(-15*n-38)*a(n-1) +2*(17*n+20)*a(n-2) +(-25*n-4)*a(n-3) +2*(2*n-3)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
a(n) ~ 13*2^(2*n+4)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012