A112335
Row sums of number triangle A112334.
Original entry on oeis.org
1, -1, -4, -7, -10, -13, -16, -19, -22, -25, -28, -31, -34, -37, -40, -43, -46, -49, -52, -55, -58, -61, -64, -67, -70, -73, -76, -79, -82, -85, -88, -91, -94, -97, -100, -103, -106, -109, -112, -115, -118, -121, -124, -127, -130, -133, -136, -139, -142, -145, -148, -151, -154, -157, -160, -163, -166, -169
Offset: 0
-
LinearRecurrence[{2,-1},{1,-1,-4},60] (* Harvey P. Dale, Apr 21 2016 *)
A112333
An invertible triangle of ratios of triple factorials.
Original entry on oeis.org
1, 2, 1, 10, 5, 1, 80, 40, 8, 1, 880, 440, 88, 11, 1, 12320, 6160, 1232, 154, 14, 1, 209440, 104720, 20944, 2618, 238, 17, 1, 4188800, 2094400, 418880, 52360, 4760, 340, 20, 1, 96342400, 48171200, 9634240, 1204280, 109480, 7820, 460, 23, 1, 2504902400
Offset: 0
Triangle begins
1;
2, 1;
10, 5, 1;
80, 40, 8, 1;
880, 440, 88, 11, 1;
12320, 6160, 1232, 154, 14, 1;
Inverse triangle A112334 begins
1;
-2, 1;
0, -5, 1;
0, 0, -8, 1;
0, 0, 0, -11, 1;
0, 0, 0, 0, -14, 1;
0, 0, 0, 0, 0, -17, 1;
-
nmax:=8: for n from 0 to nmax do for k from 0 to n do if k<=n then T(n, k) := mul(3*k1-1, k1=1..n)/ mul(3*j-1, j=1..k) else T(n, k) := 0: fi: od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od: seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jul 04 2011, revised Nov 23 2012
Showing 1-2 of 2 results.
Comments