A112339 Triangle read by rows of numbers b_{n,k}, n >= 2, 1 <= k < n such that (1/(1-q*t))*Product_{n,k} 1/(1 - q^n*t^k)^b_{n,k} = Sum_{i,j>=1} S_{i,j} q^i*t^j where S_{i,j} are entries in the table A008277 (the inverse Euler transformation of the table of Stirling numbers of the second kind).
1, 1, 2, 1, 5, 3, 1, 13, 16, 4, 1, 28, 67, 34, 5, 1, 60, 249, 229, 65, 6, 1, 123, 853, 1265, 609, 107, 7, 1, 251, 2787, 6325, 4696, 1376, 168, 8, 1, 506, 8840, 29484, 31947, 14068, 2772, 244, 9, 1, 1018, 27503, 131402, 199766, 124859, 36252, 5118, 345, 10
Offset: 2
Examples
Triangle begins: 1; 1, 2; 1, 5, 3; 1, 13, 16, 4; ...
Programs
-
Maple
EULERitable:=proc(tbl) local ser,out,i,j,tmp; ser:=1+add(add(q^i*t^j*tbl[i][j], j=1..nops(tbl[i])), i=1..nops(tbl)); out:=[]; for i from 1 to nops(tbl) do tmp:=coeff(ser,q,i); ser:=expand(ser*mul(add((-q^i*t^j)^k*choose(abs(coeff(tmp,t,j)),k),k=0..nops(tbl)/i), j = 1..degree(tmp,t))); ser:=subs({seq(q^j=0,j=nops(tbl)+1..degree(ser,q))},ser); out:=[op(out),[seq(abs(coeff(tmp,t,j)), j=1..degree(tmp,t))]]; end do; out; end: EULERitable([seq([seq(combinat[stirling2](n,k),k=1..n)],n=1..11)]);
Comments