cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112339 Triangle read by rows of numbers b_{n,k}, n >= 2, 1 <= k < n such that (1/(1-q*t))*Product_{n,k} 1/(1 - q^n*t^k)^b_{n,k} = Sum_{i,j>=1} S_{i,j} q^i*t^j where S_{i,j} are entries in the table A008277 (the inverse Euler transformation of the table of Stirling numbers of the second kind).

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 13, 16, 4, 1, 28, 67, 34, 5, 1, 60, 249, 229, 65, 6, 1, 123, 853, 1265, 609, 107, 7, 1, 251, 2787, 6325, 4696, 1376, 168, 8, 1, 506, 8840, 29484, 31947, 14068, 2772, 244, 9, 1, 1018, 27503, 131402, 199766, 124859, 36252, 5118, 345, 10
Offset: 2

Views

Author

Mike Zabrocki, Sep 05 2005

Keywords

Comments

Row sums equal to A085686 second column = A084174 - 1.

Examples

			Triangle begins:
  1;
  1,  2;
  1,  5,  3;
  1, 13, 16,  4;
  ...
		

Crossrefs

Programs

  • Maple
    EULERitable:=proc(tbl) local ser,out,i,j,tmp; ser:=1+add(add(q^i*t^j*tbl[i][j], j=1..nops(tbl[i])), i=1..nops(tbl)); out:=[]; for i from 1 to nops(tbl) do tmp:=coeff(ser,q,i); ser:=expand(ser*mul(add((-q^i*t^j)^k*choose(abs(coeff(tmp,t,j)),k),k=0..nops(tbl)/i), j = 1..degree(tmp,t))); ser:=subs({seq(q^j=0,j=nops(tbl)+1..degree(ser,q))},ser); out:=[op(out),[seq(abs(coeff(tmp,t,j)), j=1..degree(tmp,t))]]; end do; out; end: EULERitable([seq([seq(combinat[stirling2](n,k),k=1..n)],n=1..11)]);