cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112340 Triangle read by rows of numbers b_{n,k}, n>=1, 1<=k<=n such that Product_{n,k} 1/(1-q^n t^k)^{b_{n,k}} = 1 + Sum_{i,j>=1} S_{i,j} q^i t^j where S_{i,j} are entries in the table A008277 (the inverse Euler transformation of the table of Stirling numbers of the second kind).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 13, 16, 4, 0, 1, 28, 67, 34, 5, 0, 1, 60, 249, 229, 65, 6, 0, 1, 123, 853, 1265, 609, 107, 7, 0, 1, 251, 2787, 6325, 4696, 1376, 168, 8, 0, 1, 506, 8840, 29484, 31947, 14068, 2772, 244, 9, 0, 1, 1018, 27503, 131402, 199766, 124859, 36252
Offset: 1

Views

Author

Mike Zabrocki, Sep 05 2005; Aug 06 2006

Keywords

Comments

Row sums equal to A085686, second column = A084174 - 1
The number of set partitions of size n length k which are 'Lyndon,' that is, since all set partitions are isomorphic to sequences of atomic set partitions (A087903), those which are smallest of all rotations of these sequences in lex order (with respect to some ordering on the atomic set partitions) are Lyndon. 1; 1, 0; 1, 2, 0; 1, 5, 3, 0; 1, 13, 16, 4, 0;

Examples

			There are 6 set partitions of size 4 and length 3, {12|3|4}, {13|2|4}, {14|2|3}, {1|23|4}, {1|24|3}, {1|2|34} and the sequences the correspond to are ({12},{1},{1}), ({13|2}, {1}), ({14|2|3}), ({1},{12},{1}), ({1},{13|2}), ({1},{1},{12}). Now there are three {({12},{1},{1}), ({1},{12},{1}), ({1},{1},{12})} that are rotations of each other and ({1}, {1}, {12}) is the smallest of these, {({13|2}, {1}), ({1},{13|2})} are rotations of each other and ({1},{13|2}) is the smallest and ({14|2|3}) is atomic and all atomic s.p. are Lyndon. Hence {1|2|34}, {1|24|3}, {14|2|3} are Lyndon and a(4,3) = 3
Triangle begins:
  1;
  1,  0;
  1,  2,  0;
  1,  5,  3,  0;
  1, 13, 16,  4, 0;
  1, 28, 67, 34, 5, 0;
  ...
		

Crossrefs

Programs

  • Maple
    EULERitable:=proc(tbl) local ser,out,i,j,tmp; ser:=1+add(add(q^i*t^j*tbl[i][j], j=1..nops(tbl[i])), i=1..nops(tbl)); out:=[]; for i from 1 to nops(tbl) do tmp:=coeff(ser,q,i); ser:=expand(ser*mul(add((-q^i*t^j)^k*choose(abs(coeff(tmp,t,j)),k),k=0..nops(tbl)/i), j = 1..degree(tmp,t))); ser:=subs({seq(q^j=0,j=nops(tbl)+1..degree(ser,q))},ser); out:=[op(out),[seq(abs(coeff(tmp,t,j)), j=1..degree(tmp,t))]]; end do; out; end: EULERitable([seq([seq(combinat[stirling2](n,k),k=1..n)],n=1..10)]);
  • Mathematica
    nmax = 11; b[n_, k_] /; k < 1 || k > n = 0;
    coes[m_] := Product[1/(1 - q^n t^k)^b[n, k], {n, 1, m}, {k, 1, m}] - 1 - Sum[ StirlingS2[i, j] q^i t^j, {i, 1, m}, {j, 1, m}] + O[t]^m + O[q]^m // Normal // CoefficientList[#, {t, q}]&;
    sol[1] = {b[1, 1] -> 1};
    Do[sol[m] = Solve[Thread[(coes[m] /. sol[m - 1]) == 0]], {m, 2, nmax + 1}];
    bb = Flatten[Table[sol[m], {m, 1, nmax + 1}]];
    Table[b[n, k] /. bb, {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 11 2017 *)