A112351 Triangle read by rows, generated from (..., 5, 3, 1).
1, 1, 3, 1, 6, 5, 1, 9, 19, 7, 1, 12, 42, 44, 9, 1, 15, 74, 138, 85, 11, 1, 18, 115, 316, 363, 146, 13, 1, 21, 165, 605, 1059, 819, 231, 15, 1, 24, 224, 1032, 2470, 2984, 1652, 344, 17, 1, 27, 292, 1624, 4974, 8378, 7380, 3060
Offset: 0
Examples
The antidiagonal 1 9 19 7 of the array becomes row 3 of the triangle. From _Clark Kimberling_, Mar 09 2012: (Start) When jointly generated with A209414, the format as a triangle has the following first five rows: 1; 1, 3; 1, 6, 5; 1, 9, 19, 7; 1, 12, 42, 44, 9; 1, 15, 74, 138, 85, 11; The corresponding first five polynomials are 1, 1 + 3x, 1 + 6x + 5x^2, 1 + 9x + 19x^2 + 7x^3, 1 + 12x + 42x^2 + 44x^3 + 9x^4. (End) (1, 0, 0, 0, 0, ...) DELTA (0, 3, -4/3, 1/3, 0, 0, 0, ...) begins: 1; 1, 0; 1, 3, 0; 1, 6, 5, 0; 1, 9, 19, 7, 0; 1, 12, 42, 44, 9, 0; 1, 15, 74, 138, 85, 11, 0; 1, 18, 115, 316, 363, 146, 13, 0; - _Philippe Deléham_, Mar 12 2012
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209414 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A112351 *) (* Clark Kimberling, Mar 09 2012 *)
Formula
Let M = an infinite lower triangular matrix of the form [1 / 3 1 / 5 3 1 / ...] (with the rest of the terms zeros). Perform M^n * [1 0 0 0 ...] forming an array. Antidiagonals of the array become rows of the triangle A112351.
From Philippe Deléham, Mar 12 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,1) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-y*x)^2/(1-x-2*y*x-y*x^2+y^2*x^2). (End)
Comments