cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A368561 a(n) = Sum_{k=0..n} k! * n^k.

Original entry on oeis.org

1, 2, 11, 184, 6565, 390806, 34557919, 4237440628, 687219772553, 142347286888210, 36654963132246211, 11483715014356017104, 4300711472638444724653, 1897241450053063830832078, 973695564434830963964311655
Offset: 0

Views

Author

Seiichi Manyama, Dec 30 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k!*n^k);

Formula

a(n) ~ n! * n^n. - Vaclav Kotesovec, Jan 13 2024

A368555 a(n) = Sum_{k=0..n} k! * 3^(n-k).

Original entry on oeis.org

1, 4, 14, 48, 168, 624, 2592, 12816, 78768, 599184, 5426352, 56195856, 647589168, 8169788304, 111687656112, 1642737336336, 25851001897008, 433240433787024, 7702095007089072, 144751385430099216, 2867156164466937648, 59692410665110252944
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k!*3^(n-k));

Formula

a(0) = 1; a(n) = 3*a(n-1) + n!.
a(n) = (n+3)*a(n-1) - 3*n*a(n-2).
a(n) ~ n!. - Vaclav Kotesovec, Jan 13 2024

A368573 a(n) = Sum_{k=0..n} k! * k^k.

Original entry on oeis.org

1, 2, 10, 172, 6316, 381316, 33973636, 4184630356, 680641979476, 141267789027796, 36429267789027796, 11425158161234192596, 4282251538636575402196, 1890291840090813125264596, 970616058694975134467523796, 573593232413546537634467523796, 386530943604347679737893326531796
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2023

Keywords

Crossrefs

Partial sums of A061711.

Programs

  • PARI
    a(n) = sum(k=0, n, k!*k^k);

Formula

a(n) ~ n! * n^n. - Vaclav Kotesovec, Jan 13 2024
Showing 1-3 of 3 results.