A112371 Numbers n such that the last 9 decimal digits of the n-th Fibonacci number is pandigital 1-9.
541, 919, 1788, 6355, 16257, 17799, 20411, 24347, 28837, 36485, 40784, 43450, 45136, 45196, 51973, 54453, 54833, 57128, 57969, 63692, 67188, 67952, 69931, 74765, 76259, 78102, 78196, 78826, 81070, 81726, 87123, 87362, 91636, 91932
Offset: 1
Examples
The 541st Fibonacci number is: 51621 23292 73937 94428 28328 17223 02417 68441 62155 65352 08137 22196 49050 89439 99028 11978 84249 30258 98332 77779 69788 39725 641 which is pandigital 1-9 in its last 9 digits.
References
- Clifford A. Pickover, "Wonders of Numbers".
Links
- Norman Morton and Michael Satteson, Table of n, a(n) for n = 1..10000, (first 150 terms from Norman Morton)
Programs
-
J
NB. In J (www.jsoftware.com). f=: 3 : '{."(1) 1e9&|@(+/\)@|.^:(
":&.> f n -
Maple
f:= proc(n) option remember; f(n-1)+f(n-2) mod 10^9 end proc: f(0):= 0: f(1):= 1: filter:= n -> convert(convert(f(n),base,10),set)={$1..9}; select(filter, [$1..10^5]); # Robert Israel, Jan 18 2015
Comments