cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112371 Numbers n such that the last 9 decimal digits of the n-th Fibonacci number is pandigital 1-9.

Original entry on oeis.org

541, 919, 1788, 6355, 16257, 17799, 20411, 24347, 28837, 36485, 40784, 43450, 45136, 45196, 51973, 54453, 54833, 57128, 57969, 63692, 67188, 67952, 69931, 74765, 76259, 78102, 78196, 78826, 81070, 81726, 87123, 87362, 91636, 91932
Offset: 1

Views

Author

Roger Hui, Dec 22 2005

Keywords

Comments

Since the Fibonacci sequence mod 10^9 is periodic with period 1500000000, there is some positive M such that this sequence satisfies a(n+M) = a(n) + 1500000000. - Robert Israel, Jan 18 2015

Examples

			The 541st Fibonacci number is:
51621 23292 73937 94428 28328 17223 02417 68441 62155 65352
08137 22196 49050 89439 99028 11978 84249 30258 98332 77779
69788 39725 641
which is pandigital 1-9 in its last 9 digits.
		

References

  • Clifford A. Pickover, "Wonders of Numbers".

Crossrefs

Programs

  • J
    NB. In J (www.jsoftware.com).
    f=: 3 : '{."(1) 1e9&|@(+/\)@|.^:( ":&.> f n
  • Maple
    f:= proc(n) option remember; f(n-1)+f(n-2) mod 10^9 end proc:
    f(0):= 0: f(1):= 1:
    filter:= n -> convert(convert(f(n),base,10),set)={$1..9};
    select(filter, [$1..10^5]); # Robert Israel, Jan 18 2015