A112516 Numbers k such that the first 9 decimal digits of the k-th Fibonacci number is 1-9 pandigital.
2749, 4589, 7102, 7727, 8198, 9383, 12633, 15708, 19014, 21206, 21303, 21434, 21566, 22706, 22890, 25790, 28244, 29877, 32174, 32717, 34433, 34883, 37965, 44691, 47422, 48635, 54473, 60438, 60536, 63902, 68340, 72424, 73147, 75873
Offset: 1
Examples
The 2749th Fibonacci number is: 14372 68955 33879 17661 82964 56715 64334 14434 76345 06448 91772 ... which is 1-9 pandigital in its first 9 digits.
Programs
-
J
NB. (www.jsoftware.com): plus=: 4 : 0 'x xe'=. +. x. 'y ye'=. +. y. e=. xe>.ye z=. (x*10^xe-e)+y*10^ye-e (z%10^b) j. e+b=. 10<:z ) g =: 3 : '{."1 ({:,plus/)^:(
-
Maple
filter:= n -> convert(convert(combinat:-fibonacci(n),base,10)[-9..-1],set) = {$1..9}: select(filter, [$40.. 5 * 10^4]); # Robert Israel, May 31 2015
-
Mathematica
fQ[n_] := Sort@Take[IntegerDigits@Fibonacci@n, 9] == {1, 2, 3, 4, 5, 6, 7, 8, 9}; Select[ Range[40, 77705], fQ[ # ] &] (* Robert G. Wilson v, Dec 27 2005 *)
Extensions
a(31)-a(34) from Robert G. Wilson v, Dec 27 2005
Comments