cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112418 Primes which have a prime number of partitions into five distinct primes.

Original entry on oeis.org

53, 59, 67, 83, 113, 151, 157, 211, 239, 601, 809, 821, 881, 971, 1237, 1297, 1427, 1669, 1759, 1973, 2069, 2129, 2243, 2333, 2659, 2677, 2719, 2789, 2803, 2999, 3329, 3613, 3623, 3769, 3797, 4001, 4451
Offset: 1

Views

Author

Keywords

Comments

The corresponding numbers of partitions are 2,5,11,29,109,331,379,1091...

Examples

			53 is there because there are 2 partitions of 53 (3+7+11+13+19, 5+7+11+13+17) and 2 is prime.
		

Crossrefs

Programs

  • Maple
    part5_prime:=proc(N) s:=1; for n from 2 to N do cont:=0; for i from 1 to n-5 do for j from i+1 to n-4 do for k from j+1 to n-3 do for l from k+1 to n-2 do for m from l+1 to n-1 do if(ithprime(n)= ithprime(i)+ithprime(j)+ithprime(k)+ithprime(l)+ithprime(m) then cont:=cont+1; fi; od; od; od; od; od; if (isprime(cont)=true) then a[s]:=ithprime(n); s:=s+1; fi; od; end:
  • PARI
    has(n)=my(t,Q,R,S);forprime(p=n\5+1,n-26, Q=n-p; forprime(q=Q\4+1,min(p-1,Q-15), R=Q-q; forprime(r=R\3+1,min(q-1,R-8), S=R-r; forprime(s=S-r+1,(S-1)\2, isprime(S-s) && t++)))); isprime(t)
    select(has, primes(100)) \\ Charles R Greathouse IV, Apr 22 2015
    
  • PARI
    list(lim)=my(v=vectorsmall(precprime(lim)),u=List(),Q,R,S); forprime(p=13,#v-26, Q=#v-p; forprime(q=11,min(p-1,Q-15), R=Q-q; forprime(r=7,min(q-1,R-8), S=R-r; forprime(s=5,min(S-2,r-1), forprime(t=3,min(S-s,s-1), v[p+q+r+s+t]++))))); forprime(p=2,lim, if(isprime(v[p]), listput(u,p))); Set(u) \\ Charles R Greathouse IV, Apr 22 2015

Extensions

Edited by Don Reble, Jan 26 2006
a(31)-a(37) from Charles R Greathouse IV, Apr 22 2015