cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112477 Riordan array ((1-x+sqrt(1+6*x+x^2))/2, (sqrt(1+6*x+x^2)-x-1)/2).

Original entry on oeis.org

1, 1, 1, -2, -1, 1, 6, 2, -3, 1, -22, -6, 10, -5, 1, 90, 22, -38, 22, -7, 1, -394, -90, 158, -98, 38, -9, 1, 1806, 394, -698, 450, -194, 58, -11, 1, -8558, -1806, 3218, -2126, 978, -334, 82, -13, 1, 41586, 8558, -15310, 10286, -4942, 1838, -526, 110, -15, 1, -206098, -41586, 74614, -50746, 25150, -9922, 3142, -778, 142, -17, 1
Offset: 0

Views

Author

Paul Barry, Sep 07 2005

Keywords

Examples

			Triangle starts:
    1;
    1,  1;
   -2, -1,   1;
    6,  2,  -3,  1;
  -22, -6,  10, -5,  1;
   90, 22, -38, 22, -7, 1;
  ...
		

Crossrefs

Inverse of triangle A112475. Row sums are A112478.

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(1-x+Sqrt[1+6x+x^2])((Sqrt[1+6x+x^2]-x-1)/2)^k/2,{x,0,n}]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten (* Stefano Spezia, May 26 2024 *)

A112476 Diagonal sums of Riordan array (1/(1+x),x(1+x)/(1-x)).

Original entry on oeis.org

1, -1, 2, 0, 3, 3, 8, 12, 25, 43, 82, 148, 275, 503, 928, 1704, 3137, 5767, 10610, 19512, 35891, 66011, 121416, 223316, 410745, 755475, 1389538, 2555756, 4700771, 8646063, 15902592, 29249424, 53798081, 98950095, 181997602, 334745776, 615693475, 1132436851, 2082876104, 3831006428
Offset: 0

Views

Author

Paul Barry, Sep 07 2005

Keywords

Comments

Diagonal sums of A112475.

Formula

G.f.: (1-x)/((1+x)*(1-x-x^2-x^3)).
a(n) = 2*a(n-2)+2*a(n-3)+a(n-4).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-2*k} C(k-1, j)*C(n-k-j-1, n-2*k-j).
Showing 1-2 of 2 results.