A112543 Numerators of fractions n/k in array by antidiagonals.
1, 2, 1, 3, 1, 1, 4, 3, 2, 1, 5, 2, 1, 1, 1, 6, 5, 4, 3, 2, 1, 7, 3, 5, 1, 3, 1, 1, 8, 7, 2, 5, 4, 1, 2, 1, 9, 4, 7, 3, 1, 2, 3, 1, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 11, 5, 3, 2, 7, 1, 5, 1, 1, 1, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 13, 6, 11, 5, 9, 4, 1, 3, 5, 2, 3, 1, 1, 14, 13, 4, 11, 2, 3, 8, 7, 2, 1, 4, 1, 2, 1
Offset: 1
Examples
a(2,4) = 1/2 because 2/4 = 1/2. Northwest corner of the array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...; 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, ...; 1, 2, 1, 4, 5, 2, 7, 8, 3, 10, ...; 1, 1, 3, 1, 5, 3, 7, 2, 9, 5, ...; 1, 2, 3, 4, 1, 6, 7, 8, 9, 2, ...; 1, 1, 1, 2, 5, 1, 7, 4, 3, 5, ...; 1, 2, 3, 4, 5, 6, 1, 8, 9, 10, ...; 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, ...; 1, 2, 1, 4, 5, 2, 7, 8, 1, 10, ...; 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, ...; Antidiagonal triangle begins: 1; 2, 1; 3, 1, 1; 4, 3, 2, 1; 5, 2, 1, 1, 1; 6, 5, 4, 3, 2, 1; 7, 3, 5, 1, 3, 1, 1; 8, 7, 2, 5, 4, 1, 2, 1; 9, 4, 7, 3, 1, 2, 3, 1, 1; 10, 9, 8, 7, 6, 5, 4, 3, 2, 1; Regarding the generations G(n) mentioned in Comments, for m = 2, the first 4 generations are G(0) = (2), G(1) = (2,1), G(2) = (2, 1, 2/3, 1/2), G(3) = (2, 1, 2/3, 1/2, 2/5, 1/3, 2/7, 1/4); the denominators in G(3) are (1, 1, 3, 2, 5, 3, 7, 4), as in row 2. - _Clark Kimberling_, Aug 04 2025
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
- Eric Weisstein's World of Mathematics, Exponential Integral
Programs
-
Magma
[Numerator((n-k+1)/k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jan 12 2022
-
Mathematica
d[m_, n_] := n/GCD[m, n]; z = 12; TableForm[Table[d[m, n], {m, 1, z}, {n, 1, z}] ] (*array*) Flatten[Table[d[k, m + 1 - k], {m, 1, z}, {k, 1, m}]] (*sequence*) (* Clark Kimberling, Jul 04 2013 *)
-
PARI
t1(n) = binomial(floor(3/2+sqrt(2*n)),2) -n+1; t2(n) = n - binomial(floor(1/2+sqrt(2*n)),2); vector(100, n, t1(n)/gcd(t1(n),t2(n)))
-
Sage
flatten([[numerator((n-k+1)/k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Jan 12 2022
Formula
For n/k: (Start)
G.f.: x/(1-x)*log(1/(1-y)),
E.g.f.: x*exp(x)*(Ei(y) - log(y) + EulerGamma) = x*e^x*Integral_{t=0}^{y} (exp(t) - 1) dt. (End)
T(n, k) = n/gcd(k, n). - Clark Kimberling, Jul 04 2013
From G. C. Greubel, Jan 12 2022: (Start)
A(n, k) = numerator(k/n) (array).
T(n, k) = numerator((n-k+1)/k) (antidiagonals).
Sum_{k=1..n} T(n, k) = A332049(n+1).
T(n, k) = A112544(n, n-k). (End)
Extensions
Keyword tabl added by Franklin T. Adams-Watters, Sep 02 2009
Comments