A112544 Denominators of fractions n/k in array by antidiagonals.
1, 1, 2, 1, 1, 3, 1, 2, 3, 4, 1, 1, 1, 2, 5, 1, 2, 3, 4, 5, 6, 1, 1, 3, 1, 5, 3, 7, 1, 2, 1, 4, 5, 2, 7, 8, 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 1, 1, 5, 1, 7, 2, 3, 5, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 1, 3, 2, 5, 3, 1, 4, 9, 5, 11, 6, 13, 1, 2, 1, 4, 1, 2, 7, 8, 3, 2, 11, 4, 13, 14
Offset: 1
Examples
Array begins as: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...; 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, ...; 1, 2, 1, 4, 5, 2, 7, 8, 3, 10, ...; 1, 1, 3, 1, 5, 3, 7, 2, 9, 5, ...; 1, 2, 3, 4, 1, 6, 7, 8, 9, 2, ...; 1, 1, 1, 2, 5, 1, 7, 4, 3, 5, ...; 1, 2, 3, 4, 5, 6, 1, 8, 9, 10, ...; 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, ...; 1, 2, 1, 4, 5, 2, 7, 8, 1, 10, ...; 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, ...; Antidiagonal triangle begins as: 1; 1, 2; 1, 1, 3; 1, 2, 3, 4; 1, 1, 1, 2, 5; 1, 2, 3, 4, 5, 6; 1, 1, 3, 1, 5, 3, 7; 1, 2, 1, 4, 5, 2, 7, 8; 1, 1, 3, 2, 1, 3, 7, 4, 9; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
Links
- G. C. Greubel, Antidiagonals n = 1..50, flattened
Programs
-
Magma
[Denominator((n-k+1)/k): k in [1..n], n in [1..20]]; // G. C. Greubel, Jan 12 2022
-
Mathematica
Table[Denominator[(n-k+1)/k], {n,20}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2022 *)
-
PARI
t1(n) = binomial(floor(3/2+sqrt(2*n)),2) -n+1; t2(n) = n-binomial(floor(1/2+sqrt(2*n)),2); vector(100,n,t2(n)/gcd(t1(n),t2(n)))
-
Sage
flatten([[denominator((n-k+1)/k) for k in (1..n)] for n in (1..20)]) # G. C. Greubel, Jan 12 2022
Formula
From G. C. Greubel, Jan 12 2022: (Start)
A(n, k) = denominator(n/k) (array).
T(n, k) = denominator((n-k+1)/k) (antidiagonal triangle).
Sum_{k=1..n} T(n, k) = A332049(n+1).
T(n, k) = A112543(n, n-k). (End)
Extensions
Keyword tabl added by Franklin T. Adams-Watters, Sep 02 2009