cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112544 Denominators of fractions n/k in array by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 3, 4, 1, 1, 1, 2, 5, 1, 2, 3, 4, 5, 6, 1, 1, 3, 1, 5, 3, 7, 1, 2, 1, 4, 5, 2, 7, 8, 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 1, 1, 5, 1, 7, 2, 3, 5, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 1, 3, 2, 5, 3, 1, 4, 9, 5, 11, 6, 13, 1, 2, 1, 4, 1, 2, 7, 8, 3, 2, 11, 4, 13, 14
Offset: 1

Views

Author

Keywords

Examples

			Array begins as:
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...;
  1, 1, 3, 2, 5, 3, 7, 4, 9,  5, ...;
  1, 2, 1, 4, 5, 2, 7, 8, 3, 10, ...;
  1, 1, 3, 1, 5, 3, 7, 2, 9,  5, ...;
  1, 2, 3, 4, 1, 6, 7, 8, 9,  2, ...;
  1, 1, 1, 2, 5, 1, 7, 4, 3,  5, ...;
  1, 2, 3, 4, 5, 6, 1, 8, 9, 10, ...;
  1, 1, 3, 1, 5, 3, 7, 1, 9,  5, ...;
  1, 2, 1, 4, 5, 2, 7, 8, 1, 10, ...;
  1, 1, 3, 2, 1, 3, 7, 4, 9,  1, ...;
Antidiagonal triangle begins as:
  1;
  1, 2;
  1, 1, 3;
  1, 2, 3, 4;
  1, 1, 1, 2, 5;
  1, 2, 3, 4, 5, 6;
  1, 1, 3, 1, 5, 3, 7;
  1, 2, 1, 4, 5, 2, 7, 8;
  1, 1, 3, 2, 1, 3, 7, 4, 9;
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
		

Crossrefs

Numerators in A112543. See comments and references there.
Cf. A332049.

Programs

  • Magma
    [Denominator((n-k+1)/k): k in [1..n], n in [1..20]]; // G. C. Greubel, Jan 12 2022
    
  • Mathematica
    Table[Denominator[(n-k+1)/k], {n,20}, {k,n}]//Flatten (* G. C. Greubel, Jan 12 2022 *)
  • PARI
    t1(n) = binomial(floor(3/2+sqrt(2*n)),2) -n+1;
    t2(n) = n-binomial(floor(1/2+sqrt(2*n)),2);
    vector(100,n,t2(n)/gcd(t1(n),t2(n)))
    
  • Sage
    flatten([[denominator((n-k+1)/k) for k in (1..n)] for n in (1..20)]) # G. C. Greubel, Jan 12 2022

Formula

From G. C. Greubel, Jan 12 2022: (Start)
A(n, k) = denominator(n/k) (array).
T(n, k) = denominator((n-k+1)/k) (antidiagonal triangle).
Sum_{k=1..n} T(n, k) = A332049(n+1).
T(n, k) = A112543(n, n-k). (End)

Extensions

Keyword tabl added by Franklin T. Adams-Watters, Sep 02 2009