A112560 Sieve performed by successive iterations of steps where step m is: keep m terms, remove the next 2 and repeat; as m = 1,2,3,.. the remaining terms form this sequence.
1, 4, 13, 28, 61, 88, 133, 208, 313, 364, 541, 724, 853, 1048, 1261, 1564, 1993, 2104, 2581, 3028, 3553, 3904, 4621, 5368, 5893, 6544, 7141, 8104, 9373, 9904, 11113, 12088, 13333, 14428, 15433, 17368, 19021, 20188, 21733, 23944, 25261, 27304
Offset: 0
Keywords
Examples
Sieve starts with the natural numbers: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15... Step 1: keep 1 term, remove the next 2, repeat; giving 1,4,7,10,13,16,19,22,25,28,31,34,37,40,... Step 2: keep 2 terms, remove the next 2, repeat; giving 1,4,13,16,25,28,37,40,49,52,61,64,73,76,... Step 3: keep 3 terms, remove the next 2, repeat; giving 1,4,13,28,37,40,61,64,73,88,97,100,121,... Continuing in this way, we obtain this sequence. Using the floor function product formula: a(2)=1+[[[[[[[(2)*2/1]3/2]5/4]6/5]8/7]9/8]11/10]12/11]=13.
Crossrefs
Programs
-
Mathematica
Table[1 + First@FixedPoint[{Floor[#[[1]]*(#[[2]] + 1)/#[[2]]], If[Mod[#[[2]] + 1, 3] == 0, #[[2]] + 2, #[[2]] + 1]} &, {n, 1}, SameTest -> (#1[[1]] == #2[[1]] &)], {n, 0, 30}] (* Birkas Gyorgy, Mar 07 2011 *)
-
PARI
{a(n)=local(A=n,B=0,k=0); until(A==B,k=k+1;if(k%3==0,k=k+1);B=A;A=floor(A*(k+1)/k));1+A}
Formula
a(n) = 1 + 3*A073360(n).
Comments