A112564 Square array, read by ascending antidiagonals, where each row is a generalized Flavius Josephus sieve (A000960).
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 6, 1, 1, 5, 13, 13, 10, 1, 1, 6, 21, 28, 19, 12, 1, 1, 7, 31, 61, 61, 27, 18, 1, 1, 8, 43, 96, 125, 88, 39, 22, 1, 1, 9, 57, 169, 241, 261, 133, 49, 30, 1, 1, 10, 73, 232, 505, 546, 421, 208, 63, 34, 1, 1, 11, 91, 361, 785, 1051, 1171, 605, 313
Offset: 0
Examples
Table begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 6, 10, 12, 18, 22, 30, 34, ... 1, 3, 7, 13, 19, 27, 39, 49, 63, 79, ... 1, 4, 13, 28, 61, 88, 133, 208, 313, 364, ... 1, 5, 21, 61, 125, 261, 421, 605, 1101, 1681, ... 1, 6, 31, 96, 241, 546, 1171, 1776, 2761, 5046, ... 1, 7, 43, 169, 505, 1051, 2527, 5083, 7729, 11635, ... 1, 8, 57, 232, 785, 1800, 5041, 11096, 22737, 34504, ... 1, 9, 73, 361, 1153, 3961, 8281, 20161, 43633, 95049, ... 1, 10, 91, 460, 1981, 5950, 13951, 38080, 91081, 186130, ... ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(A=k,B=0,C=0);if(n==0||k==0,1, until(A==B,C=C+1;if(C%n==0,C=C+1);B=A;A=floor(A*(C+1)/C));1+A)}