cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112573 G.f. A(x) satisfies: A(x)^3 equals the g.f. of A110640, which consists entirely of numbers 1 through 9.

Original entry on oeis.org

1, 1, 0, 0, 2, -2, 5, -6, 5, 3, -26, 70, -141, 221, -229, -18, 891, -2914, 6524, -11238, 13690, -4214, -37619, 145018, -353534, 657080, -895234, 534007, 1654246, -7840402, 20737566, -41200153, 61402057, -50500722, -68352913, 441195837, -1272153666, 2690651374
Offset: 0

Views

Author

Paul D. Hanna, Sep 14 2005

Keywords

Comments

A110640 is formed from every third term of A083949, which also consists entirely of numbers 1 through 9.

Examples

			A(x) = 1 + x + 2*x^4 - 2*x^5 + 5*x^6 - 6*x^7 + 5*x^8 + 3*x^9 +...
A(x)^3 = 1 + 3*x + 3*x^2 + x^3 + 6*x^4 + 6*x^5 + 9*x^6 + 6*x^7 +...
A(x)^9 = 1 + 9*x + 36*x^2 + 84*x^3 + 144*x^4 + 252*x^5 + 489*x^6 +..
A(x)^9 (mod 27) = 1 + 9*x + 9*x^2 + 3*x^3 + 9*x^4 + 9*x^5 + 3*x^6+..
G(x) = 1 + 9*x + 9*x^2 + 3*x^3 + 9*x^4 + 9*x^5 + 3*x^6 + 9*x^7 +...
where G(x) is the g.f. of A083949.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(d=3,m=9,A=1+m*x); for(j=2,d*n, for(k=1,m,t=polcoeff((A+k*x^j+x*O(x^j))^(1/m),j); if(denominator(t)==1,A=A+k*x^j;break))); polcoeff(Ser(vector(n+1,i,polcoeff(A,d*(i-1))))^(1/3),n)}

Formula

G.f. A(x) satisfies: A(x)^9 (mod 27) = g.f. of A083949.