cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112577 A Chebyshev-related transform of the Jacobsthal numbers.

Original entry on oeis.org

0, 1, 1, 5, 8, 26, 52, 143, 317, 811, 1884, 4668, 11076, 27053, 64805, 157273, 378364, 915598, 2206976, 5333731, 12867673, 31080023, 75010008, 181128696, 437221032, 1055645785, 2548391209, 6152624621, 14853322640, 35859784130, 86572058860
Offset: 0

Views

Author

Paul Barry, Sep 14 2005

Keywords

Comments

Transform of the Jacobsthal numbers by the Chebyshev related transform which maps g(x) -> (1/(1-x^2))*g(x/(1-x^2)).

Crossrefs

Programs

  • Magma
    J:= func< n | (2^n - (-1)^n)/3 >; // A001045
    [(&+[Binomial(n-k,k)*J(n-2*k): k in [0..Floor(n/2)]]) : n in [0..40]]; // _G. C. Greubel, Jan 14 2022
  • Mathematica
    LinearRecurrence[{1,4,-1,-1}, {0,1,1,5}, 40] (* G. C. Greubel, Jan 14 2022 *)
  • Sage
    [sum(binomial(n-k,k)*lucas_number1(n-2*k, 1, -2) for k in (0..(n/2))) for n in (0..40)] # G. C. Greubel, Jan 14 2022
    

Formula

G.f.: x/( (1+x-x^2)*(1-2*x-x^2) ).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*A001045(n-2*k).
a(n) = (1/2)*Sum_{k=0..n} binomial((n+k)/2, k)*(1 + (-1)^(n-k))*A001045(k).
a(n) = Sum_{k=0..n} (-1)^k*Fibonacci(k+1)*A000129(n-k).
a(n) = (A000129(n+1) - A039834(n+1))/3. - R. J. Mathar, Sep 20 2012