A112577 A Chebyshev-related transform of the Jacobsthal numbers.
0, 1, 1, 5, 8, 26, 52, 143, 317, 811, 1884, 4668, 11076, 27053, 64805, 157273, 378364, 915598, 2206976, 5333731, 12867673, 31080023, 75010008, 181128696, 437221032, 1055645785, 2548391209, 6152624621, 14853322640, 35859784130, 86572058860
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-1,-1).
Programs
-
Magma
J:= func< n | (2^n - (-1)^n)/3 >; // A001045 [(&+[Binomial(n-k,k)*J(n-2*k): k in [0..Floor(n/2)]]) : n in [0..40]]; // _G. C. Greubel, Jan 14 2022
-
Mathematica
LinearRecurrence[{1,4,-1,-1}, {0,1,1,5}, 40] (* G. C. Greubel, Jan 14 2022 *)
-
Sage
[sum(binomial(n-k,k)*lucas_number1(n-2*k, 1, -2) for k in (0..(n/2))) for n in (0..40)] # G. C. Greubel, Jan 14 2022
Comments