cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112592 Triangle where a(1,1) = 0, a(n,m) = number of terms of row (n-1) which are coprime to m.

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 3, 2, 3, 2, 4, 2, 2, 2, 4, 5, 0, 5, 0, 5, 0, 6, 3, 3, 3, 0, 3, 3, 7, 5, 0, 5, 6, 0, 6, 5, 8, 4, 4, 4, 3, 4, 5, 4, 4, 9, 2, 8, 2, 8, 1, 9, 2, 8, 1, 10, 4, 8, 4, 10, 2, 10, 4, 8, 4, 10, 11, 0, 11, 0, 7, 0, 11, 0, 11, 0, 11, 0, 12, 6, 6, 6, 6, 6, 5, 6, 6, 6, 1, 6, 6, 13, 2, 2, 2, 12, 2, 13, 2
Offset: 1

Views

Author

Leroy Quet, Dec 24 2005

Keywords

Comments

GCD(m,0) is considered here to be m, so 0 is coprime to no positive integer but 1.

Examples

			Row 6 of the triangle is [5,0,5,0,5,0]. Among these terms there are 6 terms coprime to 1, 3 terms coprime to 2, 3 terms coprime to 3, 3 terms coprime to 4, 0 terms coprime to 5, 3 terms coprime to 6 and 3 terms coprime to 7. So row 7 is [6,3,3,3,0,3,3].
0,
1,0,
2,1,1,
3,2,3,2,
4,2,2,2,4,
5,0,5,0,5,0,
6,3,3,3,0,3,3,
7,5,0,5,6,0,6,5,
8,4,4,4,3,4,5,4,4
		

Crossrefs

Cf. A112599.
Row sums are in A114719. [From Klaus Brockhaus, Jun 01 2009]

Programs

  • Mathematica
    f[l_] := Block[{p, t}, p = l[[ -1]]; k = Length@p; t = Table[Count[GCD[p, n], 1], {n, k + 1}]; Return@Append[l, t];]; Nest[f, {{0}}, 13] // Flatten (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Dec 27 2005
Terms a(100) through a(2000) from Diana L. Mecum, Aug 12 2008