A112618 Let T(n) = A000073(n+1), n >= 1; a(n) = smallest k such that prime(n) divides T(k).
3, 7, 14, 5, 8, 6, 28, 18, 29, 77, 14, 19, 35, 82, 29, 33, 64, 68, 100, 132, 31, 18, 270, 109, 19, 186, 13, 184, 105, 172, 586, 79, 11, 34, 10, 223, 71, 37, 41, 314, 100, 25, 72, 171, 382, 26, 83, 361, 34, 249, 36, 28, 506, 304, 54, 37, 177, 331, 61, 536, 777, 458, 30, 123
Offset: 1
Keywords
Examples
Sequence T(n) starts 1,1,2,4,7,13,24,44. For the primes 2,3,7,11,13, it is easy to see that a(1)=3, a(2)=7, a(4)=5, a(5)=8, a(6)=6.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- J. L. Brenner, Linear Recurrence Relations, Amer. Math. Monthly, Vol. 61 (1954), 171-173.
- Eric Weisstein's World of Mathematics, Tribonacci Number
Crossrefs
Equals A112312(n)-1.
Programs
-
Mathematica
a[0]=0; a[1]=a[2]=1; a[n_]:=a[n]=a[n-1]+a[n-2]+a[n-3]; f[n_]:= Module[{k=2, p=Prime[n]}, While[Mod[a[k], p] != 0, k++ ]; k]; Array[f, 64] (* Robert G. Wilson v *)
Formula
a(n) = A112305(prime(n)).
Comments