cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112618 Let T(n) = A000073(n+1), n >= 1; a(n) = smallest k such that prime(n) divides T(k).

Original entry on oeis.org

3, 7, 14, 5, 8, 6, 28, 18, 29, 77, 14, 19, 35, 82, 29, 33, 64, 68, 100, 132, 31, 18, 270, 109, 19, 186, 13, 184, 105, 172, 586, 79, 11, 34, 10, 223, 71, 37, 41, 314, 100, 25, 72, 171, 382, 26, 83, 361, 34, 249, 36, 28, 506, 304, 54, 37, 177, 331, 61, 536, 777, 458, 30, 123
Offset: 1

Views

Author

T. D. Noe, Dec 05 2005

Keywords

Comments

Brenner proves that every prime divides some tribonacci number T(n). For the similar 3-step Lucas sequence A001644, there are primes (A106299) that do not divide any term.

Examples

			Sequence T(n) starts 1,1,2,4,7,13,24,44. For the primes 2,3,7,11,13, it is easy to see that a(1)=3, a(2)=7, a(4)=5, a(5)=8, a(6)=6.
		

Crossrefs

Equals A112312(n)-1.

Programs

  • Mathematica
    a[0]=0; a[1]=a[2]=1; a[n_]:=a[n]=a[n-1]+a[n-2]+a[n-3]; f[n_]:= Module[{k=2, p=Prime[n]}, While[Mod[a[k], p] != 0, k++ ]; k]; Array[f, 64] (* Robert G. Wilson v *)

Formula

a(n) = A112305(prime(n)).