cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112622 If p^b(p,n) is the highest power of the prime p dividing n, then a(n) = product_{p|n} b(p,n)^b(p,n).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 27, 4, 1, 1, 4, 1, 1, 1, 256, 1, 4, 1, 4, 1, 1, 1, 27, 4, 1, 27, 4, 1, 1, 1, 3125, 1, 1, 1, 16, 1, 1, 1, 27, 1, 1, 1, 4, 4, 1, 1, 256, 4, 4, 1, 4, 1, 27, 1, 27, 1, 1, 1, 4, 1, 1, 4, 46656, 1, 1, 1, 4, 1, 1, 1, 108, 1, 1, 4, 4, 1, 1, 1, 256, 256, 1, 1, 4, 1, 1, 1, 27, 1, 4, 1, 4, 1, 1, 1, 3125, 1, 4, 4, 16, 1, 1, 1, 27, 1
Offset: 1

Views

Author

Leroy Quet, Dec 25 2005

Keywords

Comments

a(1) = 1 (empty product).

Examples

			45 = 3^2 * 5^1. So a(45) = 2^2 * 1^1 = 4.
72 = 2^3 * 3^2. So a(72) = 3^3 * 2^2 = 108.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{fi = Last@Transpose@FactorInteger@n}, Times @@ (fi^fi)]; Rest@Array[f, 93] (* Robert G. Wilson v *)
  • PARI
    a(n)=local(v,r,i);v=factorint(n);r=1;for(i=1,matsize(v)[1],r*=v[i,2]^v[i,2]);r (Herrgesell)

Extensions

More terms from Robert G. Wilson v and Lambert Herrgesell (zero815(AT)googlemail.com), Dec 27 2005
Corrected the starting offset, data section extended to 105 terms - Antti Karttunen, May 28 2017