cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112624 If p^b(p,n) is the highest power of the prime p dividing n, then a(n) = Product_{p|n} b(p,n)!.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 2, 1, 1, 1, 24, 1, 2, 1, 2, 1, 1, 1, 6, 2, 1, 6, 2, 1, 1, 1, 120, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 1, 24, 2, 2, 1, 2, 1, 6, 1, 6, 1, 1, 1, 2, 1, 1, 2, 720, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 2, 2, 1, 1, 1, 24, 24, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 120, 1, 2, 2, 4, 1
Offset: 1

Views

Author

Leroy Quet, Dec 25 2005

Keywords

Comments

The logarithm of the Dirichlet series with the reciprocals of this sequence as coefficients is the Dirichlet series with the characteristic function of primes A010051 as coefficients. - Mats Granvik, Apr 13 2011

Examples

			45 = 3^2 * 5^1. So a(45) = 2! * 1! = 2.
		

Crossrefs

For row > 1: a(n) = row products of A100995(A126988), when neglecting zero elements.

Programs

  • Maple
    w := n -> op(2, ifactors(n)): a := n -> mul(factorial(w(n)[j][2]), j = 1..nops(w(n))): seq(a(n), n = 1..101); # Emeric Deutsch, May 17 2012
  • Mathematica
    f[n_] := Block[{fi = Last@Transpose@FactorInteger@n}, Times @@ (fi!)]; Array[f, 101] (* Robert G. Wilson v, Dec 27 2005 *)
  • PARI
    A112624(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= f[k, 2]!; ); m; } \\ Antti Karttunen, May 28 2017
    
  • Sage
    def A112624(n):
        return mul(factorial(s[1]) for s in factor(n))
    [A112624(i) for i in (1..101)]  # Peter Luschny, Jun 15 2013
    
  • Scheme
    (define (A112624 n) (if (= 1 n) n (* (A000142 (A067029 n)) (A112624 (A028234 n))))) ;; Antti Karttunen, May 29 2017

Formula

From Antti Karttunen, May 29 2017: (Start)
a(1) = 1 and for n > 1, a(n) = A000142(A067029(n)) * a(A028234(n)).
a(n) = A246660(A156552(n)). (End)
From Mats Granvik, Mar 05 2019: (Start)
log(a(n)) = inverse Möbius transform of log(A306694(n)).
log(a(n)) = Sum_{k=1..n} [k|n]*log(A306694(n/k))*A000012(k). (End)
From Amiram Eldar, Mar 08 2024: (Start)
Let f(n) = 1/a(n). Formulas from Jakimczuk (2024, pp. 12-15):
Dirichlet g.f. of f(n): Sum_{n>=1} f(n)/n^s = exp(P(s)), where P(s) is the prime zeta function.
Sum_{k=1..n} f(k) = c * n + o(n), where c = A240953.
Sum_{k=1..n} f(k)/k = c * log(n) + o(log(n)), where c = A240953. (End)

Extensions

More terms from Robert G. Wilson v, Dec 27 2005