cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112652 a(n) squared is congruent to a(n) (mod 12).

Original entry on oeis.org

0, 1, 4, 9, 12, 13, 16, 21, 24, 25, 28, 33, 36, 37, 40, 45, 48, 49, 52, 57, 60, 61, 64, 69, 72, 73, 76, 81, 84, 85, 88, 93, 96, 97, 100, 105, 108, 109, 112, 117, 120, 121, 124, 129, 132, 133, 136, 141, 144, 145, 148, 153, 156, 157, 160, 165, 168, 169, 172, 177, 180
Offset: 0

Views

Author

Jeremy Gardiner, Dec 28 2005

Keywords

Comments

Numbers m such that A000217(3*m)/2 + A000217(2*m)/3 is an integer. - Bruno Berselli, Jul 01 2016

Examples

			a(3) = 9 because 9^2 = 81 = 6*12 + 9, hence 81 == 9 (mod 12).
		

Crossrefs

Programs

  • Maple
    m = 12 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
  • Mathematica
    Select[Range[0, 180], Mod[#^2, 12] == Mod[#, 12] &] (* or *)
    CoefficientList[Series[x (1 + 2 x + 3 x^2)/((x^2 + 1) (x - 1)^2), {x, 0, 60}], x] (* Michael De Vlieger, Jul 01 2016 *)
  • PARI
    is(n)=(n^2-n)%12==0 \\ Charles R Greathouse IV, Oct 16 2015

Formula

From R. J. Mathar, Sep 25 2009: (Start)
G.f.: x*(1 + 2*x + 3*x^2)/((x^2 + 1)*(x - 1)^2).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4).
a(n) = A087960(n) + 3*n - 1. (End)