A112652 a(n) squared is congruent to a(n) (mod 12).
0, 1, 4, 9, 12, 13, 16, 21, 24, 25, 28, 33, 36, 37, 40, 45, 48, 49, 52, 57, 60, 61, 64, 69, 72, 73, 76, 81, 84, 85, 88, 93, 96, 97, 100, 105, 108, 109, 112, 117, 120, 121, 124, 129, 132, 133, 136, 141, 144, 145, 148, 153, 156, 157, 160, 165, 168, 169, 172, 177, 180
Offset: 0
Examples
a(3) = 9 because 9^2 = 81 = 6*12 + 9, hence 81 == 9 (mod 12).
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Maple
m = 12 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
-
Mathematica
Select[Range[0, 180], Mod[#^2, 12] == Mod[#, 12] &] (* or *) CoefficientList[Series[x (1 + 2 x + 3 x^2)/((x^2 + 1) (x - 1)^2), {x, 0, 60}], x] (* Michael De Vlieger, Jul 01 2016 *)
-
PARI
is(n)=(n^2-n)%12==0 \\ Charles R Greathouse IV, Oct 16 2015
Formula
From R. J. Mathar, Sep 25 2009: (Start)
G.f.: x*(1 + 2*x + 3*x^2)/((x^2 + 1)*(x - 1)^2).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4).
a(n) = A087960(n) + 3*n - 1. (End)
Comments