A112681 Primes such that the sum of the predecessor and successor primes is divisible by 3.
23, 29, 31, 37, 47, 59, 61, 67, 73, 79, 83, 89, 131, 137, 151, 163, 167, 179, 199, 223, 233, 239, 251, 269, 271, 277, 331, 337, 353, 359, 367, 379, 383, 389, 433, 439, 443, 449, 467, 479, 503, 521, 523, 547, 557, 569, 571, 577, 587, 599, 601, 613, 619, 631
Offset: 1
Examples
23 is in the sequence because 19+29=48 and 3|48. 29 is in the sequence because 29+31=60 and 3|60.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Prime@Select[Range[2, 117], Mod[Prime[ # - 1] + Prime[ # + 1], 3] == 0 &] (* Robert G. Wilson v, Jan 11 2006 *) Select[Partition[Prime[Range[150]],3,1],Divisible[#[[1]]+#[[3]],3]&][[All,2]] (* Harvey P. Dale, Aug 18 2020 *)