A117162 Matrix inverse of triangle A112682.
1, -1, 1, -1, -1, 1, 0, -2, -1, 1, -1, 0, -2, -1, 1, 1, -1, -1, -2, -1, 1, -1, 1, -1, -1, -2, -1, 1, 0, 0, 2, -2, -1, -2, -1, 1, 0, 1, -1, 2, -2, -1, -2, -1, 1, 1, -1, 3, 0, 1, -2, -1, -2, -1, 1, -1, 1, -1, 3, 0, 1, -2, -1, -2, -1, 1, 0, 2, 2, 0, 4, -1, 1, -2, -1, -2, -1, 1, -1, 0, 2, 2, 0, 4, -1, 1, -2, -1, -2, -1, 1
Offset: 1
Examples
Column 1 equals A008683 = Moebius transform of [1,0,0,0,...]. Column 2 = Moebius transform of column 1 preceded by a zero: [0,1,-1,-2,0,-1,1,0,...] = Moebius([0, 1,-1,-1,0,-1,1,-1,...]). Column 3 = Moebius transform of column 2 preceded by a zero: [0,0,1,-1,-2,-1,-1,2,...] = Moebius([0, 0,1,-1,-2,0,-1,1,...]). Column 4 = Moebius transform of column 3 preceded by a zero: [0,0,0,1,-1,-2,-1,-2,...] = Moebius([0, 0,0,1,-1,-2,-1,-1,...]). Triangle begins: 1; -1, 1; -1,-1, 1; 0,-2,-1, 1; -1, 0,-2,-1, 1; 1,-1,-1,-2,-1, 1; -1, 1,-1,-1,-2,-1, 1; 0, 0, 2,-2,-1,-2,-1, 1; 0, 1,-1, 2,-2,-1,-2,-1, 1; 1,-1, 3, 0, 1,-2,-1,-2,-1, 1; -1, 1,-1, 3, 0, 1,-2,-1,-2,-1, 1; 0, 2, 2, 0, 4,-1, 1,-2,-1,-2,-1, 1; -1, 0, 2, 2, 0, 4,-1, 1,-2,-1,-2,-1, 1; ...
Crossrefs
Formula
Column k+1 equals the Moebius transform of column k preceded by a zero, where column k includes the k-1 zeros above the diagonal, for k>=1, starting with A008683 in column 1.
Comments