cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112725 Smallest positive palindromic multiple of 3^n.

Original entry on oeis.org

1, 3, 9, 999, 999999999, 29799999792, 39789998793, 39989598993, 68899199886, 68899199886, 68899199886, 68899199886, 68899199886, 2699657569962, 146189959981641, 191388777883191, 191388777883191, 18641845754814681
Offset: 0

Views

Author

Farideh Firoozbakht, Nov 12 2005

Keywords

Comments

a(0)=1; a(1)=3 and it is easily shown that for n>1, 10^3^(n-2)-1 is a palindromic multiple of 3^n(see comments line of A062567). So for each n, a(n) exists and for n>1, a(n)<=10^3^(n-2)-1. This sequence is a subsequence of A020485(a(n)=A020485(3^n)) and for all n, A062567(3^n)<=a(n) because for all n, A062567(n)<= A020485(n). Jud McCranie conjectures that for n>1 A062567(3^n) =10^3^(n-2)-1, if his conjecture were true then from the above facts we conclude that for n>1 a(n)=10^3^(n-2)-1, but we see that for 4

Examples

			a(18)=18771463736417781 because 18771463736417781=3^18*48452429 is the smallest positive palindromic multiple of 3^18.
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=(For[m=1, !FromDigits[Reverse[IntegerDigits[m*n]]]==m*n, m++ ]; m*n);Do[Print[b[3^n]], {n, 0, 18}]