A112726 First positive multiple of 3^n whose reverse is also a multiple of 3^n.
1, 3, 9, 999, 999999999, 4899999987, 19899999972, 28999899936, 49989892689, 49999917897, 68899199886, 68899199886, 68899199886, 2678052898989, 17902896898419, 137530987695297, 189281899170567, 368055404997498
Offset: 0
Examples
a(20)=218264275944702783 because 218264275944702783=3^20*62597583 387207449572462812=3^20*111050012 & 218264275944702783 is the smallest positive multiple of 3^20 whose reverse is also amultiple of 3^20. I found a(n) for n<21, a(18) & a(19) are respectively 14048104419899757 & 171101619858478932.
Programs
-
Mathematica
b[n_]:=(For[m=1, !IntegerQ[FromDigits[Reverse[IntegerDigits[m*n]]]/n], m++ ]; m*n);Do[Print[b[3^n]], {n, 0, 18}]
Comments