cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112743 An aerated Delannoy triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 5, 0, 1, 0, 5, 0, 7, 0, 1, 1, 0, 13, 0, 9, 0, 1, 0, 7, 0, 25, 0, 11, 0, 1, 1, 0, 25, 0, 41, 0, 13, 0, 1, 0, 9, 0, 63, 0, 61, 0, 15, 0, 1, 1, 0, 41, 0, 129, 0, 85, 0, 17, 0, 1, 0, 11, 0, 129, 0, 231, 0, 113, 0, 19, 0, 1, 1, 0, 61, 0, 321, 0, 377, 0, 145, 0, 21, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 17 2005

Keywords

Comments

Diagonal sums are aerated Pell numbers.

Examples

			Rows begin
  1;
  0,  1;
  1,  0,  1;
  0,  3,  0,  1;
  1,  0,  5,  0,  1;
  0,  5,  0,  7,  0,  1;
  1,  0, 13,  0,  9,  0,  1;
  0,  7,  0, 25,  0, 11,  0,  1;
  1,  0, 25,  0, 41,  0, 13,  0,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return (1+(-1)^n)/2;
      else return T(n-1,k-1) + T(n-2,k) + T(n-3,k-1);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    A008288[n_, k_]:= Hypergeometric2F1[-n, -k, 1, 2];
    T[n_, k_]:= T[n, k]= (1+(-1)^(n-k))*A008288[(n-k)/2, k]/2;
    Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2021 *)
  • Sage
    def A008288(n, k): return simplify( hypergeometric([-n, -k], [1], 2) )
    def A112743(n, k): return (1 + (-1)^(n-k))*A008288((n-k)/2, k)/2
    flatten([[A112743(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Nov 20 2021

Formula

Riordan array (1/(1-x^2), x*(1+x^2)/(1-x^2)).
T(n,k) = Sum_{j=0..k} (1+(-1)^(n-k))*binomial(k,j)*binomial((n-k)/2,j)*2^(j-1).
Sum_{k=0..n} T(n, k) = A000073(n).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-3,k-1). - Philippe Deléham, Mar 11 2013