A112743 An aerated Delannoy triangle.
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 5, 0, 1, 0, 5, 0, 7, 0, 1, 1, 0, 13, 0, 9, 0, 1, 0, 7, 0, 25, 0, 11, 0, 1, 1, 0, 25, 0, 41, 0, 13, 0, 1, 0, 9, 0, 63, 0, 61, 0, 15, 0, 1, 1, 0, 41, 0, 129, 0, 85, 0, 17, 0, 1, 0, 11, 0, 129, 0, 231, 0, 113, 0, 19, 0, 1, 1, 0, 61, 0, 321, 0, 377, 0, 145, 0, 21, 0, 1
Offset: 0
Examples
Rows begin 1; 0, 1; 1, 0, 1; 0, 3, 0, 1; 1, 0, 5, 0, 1; 0, 5, 0, 7, 0, 1; 1, 0, 13, 0, 9, 0, 1; 0, 7, 0, 25, 0, 11, 0, 1; 1, 0, 25, 0, 41, 0, 13, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
function T(n,k) if k lt 0 or k gt n then return 0; elif k eq n then return 1; elif k eq 0 then return (1+(-1)^n)/2; else return T(n-1,k-1) + T(n-2,k) + T(n-3,k-1); end if; return T; end function; [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Nov 20 2021
-
Mathematica
A008288[n_, k_]:= Hypergeometric2F1[-n, -k, 1, 2]; T[n_, k_]:= T[n, k]= (1+(-1)^(n-k))*A008288[(n-k)/2, k]/2; Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2021 *)
-
Sage
def A008288(n, k): return simplify( hypergeometric([-n, -k], [1], 2) ) def A112743(n, k): return (1 + (-1)^(n-k))*A008288((n-k)/2, k)/2 flatten([[A112743(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Nov 20 2021
Formula
Riordan array (1/(1-x^2), x*(1+x^2)/(1-x^2)).
T(n,k) = Sum_{j=0..k} (1+(-1)^(n-k))*binomial(k,j)*binomial((n-k)/2,j)*2^(j-1).
Sum_{k=0..n} T(n, k) = A000073(n).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-3,k-1). - Philippe Deléham, Mar 11 2013
Comments