A112819 Numbers k such that lcm(1,2,3,...,k)/15 equals the denominator of the k-th harmonic number H(k).
20, 24, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 41889597, 41889598, 41889599, 41889600, 41889601, 41889602, 41889603, 41889604, 41889605, 41889606, 41889607
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 15, AppendTo[t, n]], {n, 10^6}]; t
Extensions
Definition corrected by Jinyuan Wang, May 03 2020
More terms from Chai Wah Wu, Mar 18 2021
Comments