A112830 Table of number of domino tilings of generalized Aztec pillows of type (1, ..., 1, 3, 1, ..., 1)_n.
1, 1, 5, 1, 10, 25, 1, 17, 65, 113, 1, 26, 146, 346, 481, 1, 37, 292, 932, 1637, 1985, 1, 50, 533, 2248, 5013, 7218, 8065, 1, 65, 905, 4937, 13897, 24201, 30529, 32513, 1, 82, 1450, 10018, 35218, 74530, 108970, 126034, 130561, 1, 101, 2216, 19016, 82436
Offset: 0
Examples
The number of tilings of a generalized Aztec pillow of type (1,1,3,1)_n is entry (4,3) = 346.
Links
- C. Hanusa, A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows, PhD Thesis, 2005, University of Washington, Seattle, USA.
Crossrefs
Programs
-
Maple
matrix(11,11,[seq([seq(((2^n-sum(binomial(n,j),j=0..k))^2+(binomial(n-1,k))^2)/2,n=k+1..k+11)],k=0..10)]);
Formula
T(2*n,n) = A264960(n). - Peter Bala, Nov 29 2015
Comments