A112844
Small-number statistic from the enumeration of domino tilings of a 9-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 89, 89, 193, 185, 410, 482, 1444, 2018, 6362, 8461, 19885, 22861, 51125, 59792, 146749, 195749, 529114, 730465, 1907545, 2350177, 5638489, 6692337, 16167545, 20091490, 51762100, 67753160, 178151440, 229118152
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185. A112844(n)=185.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112842
Number of domino tilings of a 9-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 89, 356, 1737, 9065, 49610, 325832, 2795584, 28098632, 310726442, 3877921669, 58896208285, 1083370353616, 22901813128125, 548749450880000, 15471093192996501, 522297110942557556, 20691062026775504896
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
Showing 1-2 of 2 results.
Comments