A112844
Small-number statistic from the enumeration of domino tilings of a 9-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 89, 89, 193, 185, 410, 482, 1444, 2018, 6362, 8461, 19885, 22861, 51125, 59792, 146749, 195749, 529114, 730465, 1907545, 2350177, 5638489, 6692337, 16167545, 20091490, 51762100, 67753160, 178151440, 229118152
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185. A112844(n)=185.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112833
Number of domino tilings of a 3-pillow of order n.
Original entry on oeis.org
1, 2, 5, 20, 117, 1024, 13357, 259920, 7539421, 326177280, 21040987113, 2024032315968, 290333133984905, 62102074862600192, 19808204598680574457, 9421371079480456587520, 6682097668647718038428569, 7067102111711681259234263040, 11145503882824383823706372042925
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13.
-
with(LinearAlgebra):
b:= proc(x, y, k) option remember;
`if`(y>x or y Matrix(n, (i, j)-> b(i-1, i-1, j-1)):
R:= n-> Matrix(n, (i, j)-> `if`(i+j=n+1, 1, 0)):
a:= n-> Determinant(P(n)+R(n).(P(n)^(-1)).R(n)):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 26 2013
-
b[x_, y_, k_] := b[x, y, k] = If[y>x || yJean-François Alcover, Nov 08 2015, after Alois P. Heinz *)
A112835
Small-number statistic from the enumeration of domino tilings of a 3-pillow of order n.
Original entry on oeis.org
1, 2, 5, 5, 13, 16, 37, 45, 109, 130, 313, 377, 905, 1088, 2617, 3145, 7561, 9090, 21853, 26269, 63157, 75920, 182525, 219413, 527509, 634114, 1524529, 1832625, 4405969, 5296384, 12733489, 15306833, 36800465, 44237570, 106355317
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
1 + 2*x + 5*x^2 + 5*x^3 + 13*x^4 + 16*x^5 + 37*x^6 + 45*x^7 + 109*x^8 + ...
The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13. A112835(4)=13.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112839
Number of domino tilings of a 7-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 136, 666, 3577, 23353, 200704, 2062593, 24878084, 373006265, 6917185552, 153624835953, 4155902941554, 138450383756352, 5602635336941568, 274540864716936000, 16486029239132118530, 1209110712606533552257
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112841
Small-number statistic from the enumeration of domino tilings of a 7-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 34, 34, 74, 73, 193, 256, 793, 1049, 2465, 2857, 6577, 8226, 21348, 28872, 74740, 91970, 222217, 268769, 669265, 852305, 2201945, 2805760, 7000777, 8636081, 21311098, 26588770, 67091170, 85150213
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193. A112841(n)=193.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112836
Number of domino tilings of a 5-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 52, 261, 1666, 14400, 159250, 2308545, 43718544, 1079620569, 34863330980, 1466458546176, 80646187346132, 5787269582487581, 541901038236234048, 66279540183479379277, 10578427028263503488000
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 5-pillow of order 6 is 1666=7^2*34.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112838
Small-number statistic from the enumeration of domino tilings of a 5-pillow of order n.
Original entry on oeis.org
1, 2, 5, 13, 13, 29, 34, 100, 130, 305, 361, 881, 1145, 2906, 3557, 8669, 10693, 26893, 33680, 83360, 102800, 254565, 317165, 790037, 980237, 2428298, 3011265, 7483801, 9301217, 23092857, 28646722, 71093860
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 5-pillow of order 6 is 1666=7^2*34. A112838(n)=34.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112834
Large-number statistic from the enumeration of domino tilings of a 3-pillow of order n.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 19, 76, 263, 1584, 8199, 73272, 566401, 7555072, 87000289, 1730799376, 29728075177, 881736342784, 22583659690665, 998900331837728, 38149790451459859, 2516220411436892160, 143302702816187031875
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 3-pillow of order 4 is 117=3^2*13. A112834(4)=3.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112840
Large-number statistic from the enumeration of domino tilings of a 7-pillow of order n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 7, 11, 28, 51, 154, 389, 1556, 4833, 22477, 80532, 440512, 1916580, 13388593, 73763989, 632754664, 4175659899, 42606281476, 336819337955, 4181786155008, 40981322633555, 630857431556758, 7576627032674784
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 7-pillow of order 8 is 23353=11^2*193. A112840(n)=11.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
A112843
Large-number statistic from the enumeration of domino tilings of a 9-pillow of order n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 3, 7, 11, 26, 44, 118, 221, 677, 1721, 6884, 21165, 95800, 324693, 1633462, 6253408, 35917622, 161554715, 1151376732, 6387653627, 54325024024, 348582834189, 3376194023305, 24664208882500, 273518249356480
Offset: 0
Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005
The number of domino tilings of the 9-pillow of order 8 is 9065=7^2*185. A112843(n)=7.
- C. Hanusa (2005). A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows. PhD Thesis. University of Washington, Seattle, USA.
Showing 1-10 of 12 results.
Comments